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ABSTRACT
Sculpt is a companion application to Cubit [15] designed to run in parallel for generating all-hex meshes
of complex geometry. It uses a unique overlay-grid procedure that extracts surfaces from a
volume-fraction representation of the geometry. This allows for fast, automatic, fault-tolerant meshing
in a high-performance computing (HPC) environment. Although Sculpt can be driven from Cubit as a
GUI front-end, Sculpt was developed as a separate application so that it can be run independently from
Cubit on HPC computing platforms. It was also designed as a separable software library so it can be
easily integrated as an in-situ meshing solution within other codes. This work provides a brief technical
discussion of the algorithms used in Sculpt as well as a complete user’s manual. It includes details of the
Cubit interface to Sculpt and the complete manual for the stand-alone application, including examples.
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1. SCULPT TECHNICAL
DESCRIPTION

This chapter provides a brief technical overview of the Sculpt application, a separate companion
application to Cubit designed to generate all-hex meshes of complex geometries.

1.1. SCULPT PROCEDURE

Figure 1-1. The procedure for generating a hex mesh using the
Sculpt overlay grid method

Themethod for generating an all-hex mesh employed by Sculpt is often referred to in the literature as an
overlay-grid ormesh-first method. This dif󱤎ers signi󱤏󱢑cantly from the algorithms employed by Sweeping
andMapping, which are classi󱤏󱢑ed as geometry-󱤏󱢑rst methods. Geometry-frst meshing techniques are the
most commonmethods used in Cubit [15], which can result in a very high quality mesh. Geometry-󱤏󱢑rst
methods usually require manual decomposition of the geometry into mappable or sweepable volumes
to 󱤏󱢑t a recognized topology, a process that can often be very time consuming, tedious and sometimes
impossible. In contrast, the Sculpt method begins with an overlay grid encompassing the geometry. The
overlay grid is often a bounding-box 󱤏󱢑tted Cartesian grid but can also be any structured or unstructured
mesh that overlaps the geometry. Geometric features are carved or sculpted from the overlay grid and
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boundaries smoothed to create the 󱤏󱢑nal hex mesh. Unlike Mapping and Sweeping, Sculpt does not
need a recognized topology on which to operate. This eliminates the need for prior decomposition
which can be an enormous time savings for users. Input to Sculpt can be any geometry in the form of a
standard STL format or geometric primitives. Input can also be voxel-based data in the form of volume
fractions or bitmaps.

The basic Sculpt procedure is illustrated in 󱤏󱢑gure 1-1. Beginning with a Cartesian grid as the base mesh,
shown in 󱤏󱢑gure 1-1(a), a geometric description is imposed. Nodes from the base grid that are near the
boundaries are projected to the geometry, locally distorting the nearby hex cells (󱤏󱢑gure 1-1(b)). A pillow
layer of hexes is then inserted at the surfaces by duplicating the interface nodes on either side of the
boundaries and inserting hexes (󱤏󱢑gures 1-1(c) and (d)). While constraining node locations to remain on
the interfaces, smoothing procedures can now be employed to improve mesh quality of nearby hexes
(󱤏󱢑gure 1-1(e)).

Figure 1-2. Hex mesh generated using the Sculpt overlay grid procedure

Sculpt is limited to capturing geometric features with the available resolution of the selected overlay
grid. Because of this, care should be taken in selecting an appropriate cell size or mesh resolution for the
input mesh. When a structured or Cartesian grid is used as the base mesh, adaptivity can be applied to
re󱤏󱢑ne the overlay grid to better capture features. In addition, the default mode will not attempt to
capture sharp exterior features. Figure 1-2 shows an example of a sculpt mesh of a CADmodel. Note
that exterior corner features are rounded, however the ef󱤎ect of sharp feature capture becomes less
pronounced as resolution increases as demonstrated in 󱤏󱢑gures 1-3(a) and (b). Current research and
development ef󱤎orts include capabilities to incorporate sharp features, but is presently limited in its
application.

Another aspect of model preparation for computational simulation involves geometry cleanup and
simpli󱤏󱢑cation. In most cases, geometry-󱤏󱢑rst methods, such as Sweeping, require an accurate
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Figure 1-3. Examples of the same model meshed at two different
resolutions showing a cutaway view of the mesh

non-manifold boundary representation before mesh generation can begin. Small, sometimes unseen
gaps, overlaps and misalignments can result in sliver elements or mesh failure. Tedious manual
geometry simpli󱤏󱢑cation and manipulation is often required before meshing can commence. Sculpt,
however employs a solution that avoids much of the geometry inaccuracy issues inherent in CAD design
models. Using a faceted representation of the solid model, a voxel-based volume fraction representation
is generated. Figure 1-4 illustrates the procedure where a CADmodel serving as input (󱤏󱢑gure 1-4(a)) is
processed by a procedure that will generate volume fraction scalar data for each cell of an overlay
Cartesian grid (󱤏󱢑gure 1-4(b)). One value per material per cell is computed that represents the volume
fraction of material 󱤏󱢑lling the cell. A secondary geometry representation is then extracted using an
interface tracking technique from which the 󱤏󱢑nal hex mesh is generated (󱤏󱢑gure 1-4(c)). While similar to
its initial facet-based representation, the new secondary geometry description developed from the
volume fraction data results in a simpli󱤏󱢑ed model that tends to wash over small features and
inaccuracies that are smaller than the resolution of the base cell size.

Figure 1-4. A representation of the procedure used to generate a
hex mesh with Sculpt using Volume Fractions

While acknowledging some loss in model 󱤏󱢑delity in this new volume-fraction based geometric model,
the advantage and time-savings to the analyst of being able to ignore troublesome geometry issues is
enormous. At the same time it may be important to understand what the additional discrete
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approximations will make to solution accuracy and employ relevant engineering judgement in the use of
this technology.

1.2. LITERATURE REVIEW

Overlay-grid methods for generating hexahedral meshes have been available in the literature since the
early 1990’s. We provide a summary of some the main external contributions and publications. We also
provide a list of publications by the authors that describe the methods used by Sculpt in more detail.

1.2.1. Publications by External Authors

The following is a summary of some of external publication on overlay-grid methods with a brief
description of their contribution. Full references are available at the end of this report:

• Octree-based Generation of Hexahedral Element Meshes by Schneiders et. al. [16]: First
introduction of overlay grid methods as a solution for automatic hex meshing. Also introduces
template-based re󱤏󱢑nement for octree adaptivity.

• Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement
templates by Ito et. al. [2]: Extends the use of templates for octree re󱤏󱢑nement.

• Adaptive hexahedral mesh generation based on local domain curvature and thickness using a
modified grid-based method by H. Zhang and Zhao [19]: Introduces mesh sizing for grid-based
methods that includes geometric features such as curvature, proximity and local mesh size.

• Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data by Y. Zhang
and Bajaj [20]: Introduces the dual contouring approach to build the hexahedral mesh from
volumetric data.

• Automatic 3D Mesh Generation for a Domain with Multiple Materials by Y. Zhang et. al. [21]:
Extends the dual contouring approach to capture internal features from volumetric data.

• Constrained mesh optimization on boundary by Yin and Teodosiu [18]: Also introduces dual
contouring and feature capture methods for overlay grids.

• Topologic and Geometric Constraint-based Hexahedral Mesh Generation [17]: Introduces buf󱤎er
layers at boundaries to improve element quality and concept of topological equivalence for
feature capture.

• Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features by
Marechal [3]: Overlay-grid method introduced for mechanical objects. Commercial toolHexa by
Distene Inc. is based on this approach.

• Isotropic Conforming Refinement of Quadrilateral and Hexahedral Meshes Using Two-Refinement
Templates by Ebeida et. al. [1]: Introduces two-re󱤏󱢑nement methods to adapt overlay grids.
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• A Robust 2-Refinement Algorithm in Octree and Rhombic Dodecahedral Tree Based
All-Hexahedral Mesh Generation by Y. Zhang et. al. [22]: Extension of 2-re󱤏󱢑nement methods for
overlay grids.

1.2.2. Publications by the Authors

The Sculpt application presented in this report is the result of signi󱤏󱢑cant research by many people at
Sandia over the past several years. The following technical papers, written by the authors of Sculpt,
describe the overlay grid methods used in Sculpt. These papers were presented at the International
Meshing Roundtable and other venues and most are available on the website
http://imr.sandia.gov. Full references are included at the end of this report.

• Parallel Octree-Based Hexahedral Mesh Generation for Eulerian to Lagrangian Conversion,
LDRD Project No. 149521 [12]: Document from initial implementation of Sculpt. Includes
description of original algorithms with emphasis on shock physics applications.

• Parallel Hex Meshing from Volume Fractions [13][14]: Describes the basic algorithms and
mathematics used in the Sculpt procedure.

• Embedding Features in a Cartesian Grid [9]: Proposes new methods for capturing features from
a Cartesian grid for hexahedral overlay-grid methods.

• Parallel Smoothing for Grid-Based Methods [4]: A brief description of the smoothing procedures
used in Sculpt.

• Validation of Grid-Based Hex Meshes with Computational Solid Mechanics [7][8]: Describes a
study where computational results from Sculpt meshes are compared with Sweep meshes using
the Sierra Solid Mechanics Tool as a comparison.

• Degenerate Hex Elements [6]: Introduces use of a degeneracies or collapsed edges in hexahedral
elements in a FEAmesh along with their implementation in Sculpt.

• A Template-Based Approach for Parallel Hexahedral Two-Refinement [10][11]: Describes the
re󱤏󱢑nement procedures used for generating adapted Sculpt meshes.

• Hexahedral Mesh Generation for Computational Materials Modeling [5]: New developments to
Sculpt for computational materials modeling
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2. RUNNING SCULPT FROM
CUBIT

Although Sculpt is a command-line application, separate from Cubit, it can use Cubit’s graphical user
interface as a front-end to operate sculpt. Cubit includes a command-line and GUI panel to drive
sculpt. The cubit command-line, described in this chapter will build the appropriate input 󱤏󱢑les to run
an external sculpt process to mesh the current geometry. When the sculpt parallel command is executed
in Cubit, sculpt will automatically generate the mesh externally to Cubit and bring the mesh back to
Cubit.

A few practical examples of generating meshes with sculpt from Cubit are included in Appendix O

2.1. PREPARING TO USE SCULPT

2.1.1. Platforms

Sculpt is available for Windows, Mac and Linux operating systems.

2.1.2. Sculpt Installation

Sculpt is a stand-alone executable, separate from Cubit. In order for Cubit to start up Sculpt, it must be
on your system and accessible to Cubit. The default installation of Cubit should install 󱤏󱢑les in the
correct locations for this to occur. Check with Cubit support if it did not come with your installation or
you are not able to locate it or any of its supporting applications

To run Sculpt from Cubit, four executable 󱤏󱢑les are needed:

• sculpt: Application that controls start-up of mpiexec and psculpt. Main entry point from
Cubit, that checks for the existence and compatibility of either the systemmpiexec application or
will use a local cubit installation of mpiexec.

• psculpt: The main mpi-based Sculpt application. Requires mpiexec to run.

• mpiexec: Standard application available on most linux-based operating systems for starting up
mpi-based applications on multiple processors. This should be available with your Cubit
installation, but is also available from open-mpi.org
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• epu: Used for combining multiple exodus 󱤏󱢑les, generated with Sculpt, into a single exodus 󱤏󱢑le.
This executable is optional, but is useful for importing the resulting mesh into Cubit for viewing.
It is part of the SEACAS tool suite developed by Sandia National Laboratories and is also
included with your Cubit installation. It can also be obtained in open source form from
sourceforge.net.

To view the current path to these executables that Cubit will use, issue the following command from the
Cubit command window

Sculpt Parallel Path List

See the Sculpt Parallel Path Command for more info on setting and customizing these paths.

The following image illustrates the process 󱤐󱤔ow when the sculpt parallel command is used in Cubit.

Figure 2-1. Sculpt process flow when invoked from Cubit

For the Sculpt meshing process, a set of 󱤏󱢑les, including a facet-based stl 󱤏󱢑le are written to disk. The
sculpt application is then started up which in turn invokes mpiexec to start up multiple instances of
psculpt in parallel. psculpt then performs the meshing and writes one exodus 󱤏󱢑le per processor. These
󱤏󱢑les can then be combined using epu and then imported back into Cubit for viewing.

2.1.3. Setting your Working Directory

When using the Sculpt Parallel command in Cubit, several temporary 󱤏󱢑les will be written to the current
working directory. Because of this, it is important to set your working directory before using Sculpt to a
desired location where you want these 󱤏󱢑les placed.
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2.2. SCULPT PARALLEL COMMAND

The command syntax for preparing a model for Sculpt is:

Sculpt Parallel [[volume <ids>] [block <ids>]]
[processors <value>][fileroot ’<root filename>’]
[exodus ’<exodus filename>’][{OVERWRITE|no_overwrite}]
[absolute_path][{EXECUTE|no_execute}]
[size <value>|autosize <value>]
[box {align | location <options>|expand <value>}]
[smooth <value>][csmooth <value>]
[num_laplace <value>][max_opt_iters <value>]
[opt_threshold <value>][curve_opt_thresh <value>]
[max_pcol_iters <value>][pcol_threshold <value>]
[max_deg_iters <value>][deg_threshold <value>]
[xintervals <value>][yintervals <value>][zintervals <value>]
[gen_sideset <value>][{void|NO_VOID}][void_block <value>]
[stair <value>][htet <value>][pillow <value>]
[adapt_type <value>][adapt_threshold <value>][adapt_levels <value>]
[scale <value>][xtranslate <value>][ytranslate <value>][ztranslate <value>]
[{COMBINE|no_combine}][{IMPORT|no_import}][{SHOW|no_show}]
[{capture|NO_CAPTURE}][{CLEAN|no_clean}]
[{gen_input_file <filename>|no_gen_input_file}]
[debug <value>]

The following tables 2-1 to 2-3 are a summary of options that can be invoked from the Cubit sculpt
parallel command. It includes an abbreviated description of the option as well as the option’s default. If
the option is not explicitly used in the command, the default value listed will be used. The Sculpt
option is the corresponding command that can be used in a sculpt input 󱤏󱢑le when sculpt is invoked
directly from an operating system terminal window.

2.3. CONTROLLING THE EXECUTION OF
SCULPT

The following command options can be used to control the execution of Sculpt from within Cubit and
can be used with the sculpt parallel command.

volume <ids> | block <ids>
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Table 2-1. Summary of Sculpt Cubit Command Options

Cubit Option Description Default Sculpt Option
volume <ids> |
block <ids>

List of volumes or blocks to in-
clude in the mesh.

Volume all stl_file,
diatom_file

processors
<value>

Number of processors to use
for meshing.

4 num_procs

fileroot ’<root
filename>’

Root of 󱤏󱢑le names for output. sculpt_parallel

exodus ’<exodus
filename>’

Output Exodus mesh 󱤏󱢑le name <’root 󱤏󱢑le-
name’>

exodus_file

OVERWRITE |
no_overwrite

Force overwrite of 󱤏󱢑les in direc-
tory

overwrite

absolute_path Use absolute path for 󱤏󱢑lenames OFF (relative
path)

EXECUTE |
no_execute

Run sculpt or dump input 󱤏󱢑les
only

execute

size <value> |
autosize <value>

Set size of cells in Cartesian grid autosize 10 cell_size

xintervals
<value>
yintervals
<value>
zintervals
<value>

Number of cells in each coor-
dinate direction in the overlay
Cartesian grid

automatically
computed
from size

nelx, nely, nelz

box align Automatically align geometry
to grid

OFF align

box location
<options>

De󱤏󱢑ne bounds of the Cartesian
grid

Enclosing
bounding
box with 2.5
additional cells
on each side

xmin, ymin, zmin,
xmax, ymax, zmax

box expand
<value>

De󱤏󱢑ne Cartesian grid by expan-
sion percentage from a tight
bounding box.

OFF bbox_expand

smooth <value> Smoothing method for vol-
umes and surfaces

1 smooth

csmooth <value> Smoothing method for curves 5 csmooth
num_laplace
<value>

Number of Laplacian smooth-
ing iterations

2 laplacian_iters

max_opt_iters
<value>

Maximum number of parallel
Jacobi optimization iterations

5 max_opt_iters

21



Table 2-2. Summary of Sculpt Cubit Command Options (continued)

Cubit Option Description Default Sculpt Option
opt_threshold
<value>

Stopping criteria for Jacobi op-
timization smoothing

0.6 opt_threshold

curve_opt_thresh
<value>

Metric at which curves are not
honored

0.1 curve_opt_thresh

max_pcol_iters
<value>

Maximum number of parallel
coloring smoothing iterations

100 max_pcol_iters

pcol_threshold
<value>

Stopping criteria for parallel
color smoothing

0.2 pcol_threshold

max_deg_iters
<value>

Maximum number of degener-
ate iterations

0 max_deg_iters

deg_threshold
<value>

Convert hexes below threshold
to degenerates

0.2 deg_threshold

gen_sidesets
<value>

Sideset and nodeset generation
method

0 gen_sidesets

void Mesh void OFF mesh_void
void_block Block ID of void mesh 0 void_mat
stair <value> Generate Stair-step mesh OFF stair
htet <value> Convert hexes below quality

threshold to tets
-1 htet

pillow <value> Set pillowing criteria 0 pillow
adapt_type
<value>

Adaptive meshing type 0 adapt_type

adapt_threshold
<value>

Threshold for adaptive mesh-
ing

cell_size
4·adapt_levels2 adapt_threshold

adapt_levels
<value>

Number of levels of adaptive re-
󱤏󱢑nement

2 adapt_levels

scale <value> Scale mesh by factor 1.0 scale
xtranslate
<value>
ytranslate
<value>
ztranslate
<value>

Translate mesh in coordinate
directions

0.0 xtranslate,
ytranslate,
ztranslate

COMBINE |
no_combine

Combine Exodus mesh 󱤏󱢑les
into a single mesh for import

combine

IMPORT |
no_import

Import the mesh after mesh
generation in Sculpt

import

SHOW | no_show Echo the output of Sculpt to
command line window

show
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Table 2-3. Summary of Sculpt Cubit Command Options (continued)

Cubit Option Description Default Sculpt Option
capture |
NO_CAPTURE

Project boundary nodes to STL
geometry (beta feature)

no_capture capture

CLEAN | no_clean Delete temporary 󱤏󱢑les gener-
ated during Sculpt run

clean

gen_input_file
<file name> |
no_gen_input_file

Generate a Sculpt input 󱤏󱢑le
with current settings

gen_input_file

debug <value> Set a debug processor for de-
bugging

-1

List of volumes or blocks to include in the mesh. One 󱤏󱢑le containing a faceted representation (STL) per
volume will be generated and saved in the current working directory to be used as input to Sculpt. Each
volume will be treated as a separate material within sculpt and a conforming mesh will be generated
where volumes touch. If the Block command is used, one 󱤏󱢑le per block will be used. Each block
represents a separate material in Sculpt.

fileroot ’<root filename>’

Root of 󱤏󱢑le names for output. When the sculpt parallel command is executed, Cubit will generate
multiple 󱤏󱢑les in the working directory used for input to the Sculpt application. The ’<root 󱤏󱢑lename>’
will be used as the basis for naming these 󱤏󱢑les.

OVERWRITE | no_overwrite

By default, Cubit will overwrite an existing set of 󱤏󱢑les with the same ’<root 󱤏󱢑lename>’. To over-ride, use
the no_overwrite option.

absolute_path

By default, Cubit will write the relative path names of 󱤏󱢑les used in the .run and .diatom 󱤏󱢑les. To force
absolute path names to be written, use the absolute_path option

EXECUTE | no_execute

By default, Cubit will attempt to run sculpt in parallel on the machine Cubit is currently running on.
To generate just the required input to run Sculpt at a later time or on another machine, use this option.
A 󱤏󱢑le of the form <root 󱤏󱢑lename>.run will be generated in the current working directory. (for example
"model.run"). Executing the .run 󱤏󱢑le from the linux command line should run sculpt in parallel. It can
also be used to run sculpt on a cluster where a Cubit executable may not be available.
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size <value> | autosize <value>

The size option is the absolute cell size for the Cartesian grid and is the same as the cell_size option
in sculpt. The autosize option is a value between 0 and 10. It represents a model independent size
where 1 is the small size and 10 is large. This is the same scaling factor used in Cubit’s auto sizing but is
divided by ten. A size value will be computed from the selected autosize and used as the absolute cell size
for the base Cartesian grid.

box location <options>

Location options de󱤏󱢑ne the bounds of the Cartesian grid. The 󱤏󱢑rst Location <option> de󱤏󱢑nes the
minimum Cartesian coordinate of the grid and the second, the maximum. The <options> can be any
valid method for de󱤏󱢑ning a coordinate location in cubit. In most cases the position option can be
used. The default is computed as an enclosing bounding box with 2.5 additional cells on each side.

COMBINE | no_combine

If the no_combine option is used, following execution of Sculpt, the resulting exodus meshes will not
be combined using the epu seacas tool. Otherwise the default will automatically combine the meshes
generated by each processor into a single mesh. Note that epu should be installed on your system and
the path to epu de󱤏󱢑ned using the sculpt parallel path command. Epu is a code developed by
Sandia National Laboratories and is part of the SEACAS tool suite. It combines multiple Exodus
databases produced by a parallel application into a single Exodus database. The epu program should be
included with distributions of Cubit beginning with Version 15.0.

IMPORT | no_import

If the no_import option is used, following execution of Sculpt, the result will be not be imported into
Cubit as a free mesh. The default IMPORT option will automatically import the mesh that was generated
in Sculpt. If the no_combine option has been used, then multiple free meshes will be imported with
duplicate nodes and faces at processor domain boundaries. Otherwise a single free mesh, the result of
the epu code, will be imported. Note that the resulting mesh will not be associated with the original
geometry, however Block (material) de󱤏󱢑nitions will be maintained. In addition, a separate group will be
generated for each imported mesh (One per processor). The default will automatically import the mesh
following mesh generation in Sculpt.

SHOW | no_show

If the no_show option is used, while the external Sculpt process is running, no output from the Sculpt
application will be displayed to the command window. Otherwise, the default SHOW is used and output
from the Sculpt application will be echoed to the Cubit command window. This option is only ef󱤎ective
if the no_execute is not used.
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CLEAN | no_clean

If the clean option is used, temporary 󱤏󱢑les generated during the sculpt parallel command will be
deleted. This includes any exodus mesh 󱤏󱢑les, .stl, .diatom, .log and .run 󱤏󱢑les. The default for this option
is CLEAN, therefore, use the no_clean option to keep any temporary 󱤏󱢑les generated as part of the
current Sculpt run.

gen_input_file <file name> | no_gen_input_file

An input 󱤏󱢑le with the given 󱤏󱢑le name will be generated when the command is executed. This is a text
󱤏󱢑le containing all sculpt options used in the command. The input 󱤏󱢑le is intended to be used for batch
execution of sculpt. To run sculpt from the operating system command line you would use the -i
option. For example: sculpt -i myinputfile.i -j 4where myinputfile.i is the name of the
input 󱤏󱢑le speci󱤏󱢑ed with the gen_input_file option and -j 4 is the number of processors to use.

debug <value>

The debug option is used only as a developer debugging tool. It will set the debug processor and sleep
upon execution to allow a debugger to be attached to the process.

2.4. SCULPT PARALLEL PATH COMMAND

The command for letting Cubit know where the Sculpt and related applications are located is:

Sculpt Parallel Path [List|Psculpt|Epu|Mpiexec]

This command de󱤏󱢑nes the path to psculpt, epu and mpiexec on your system. In most cases,
however, these paths should be automatically set provided Sculpt was successfully installed with your
Cubit installation. The list option will list the current paths that Cubit will use for these tools. If an
alternate path to these executables is desired, it is recommended that this command be used in the .cubit
initialization 󱤏󱢑le so that it wont be necessary to de󱤏󱢑ne these parameters every time Cubit is run.
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2.5. SCULPT MESH QUALITY CONTROL

In most cases, the Sculpt tool can be used without adjusting default values. Depending on the
characteristics of the geometry to be meshed, the default values may not yield adequate mesh quality.
Upon completion, Sculpt reports to the command line, a summary of the mesh that was generated.
This includes a summary of the mesh quality. Care should be taken to review this summary to ensure
the minimummesh quality is in a range suitable for analysis.

The element metric used for computing mesh quality in Sculpt is the Scaled Jacobian. This is a value
between -1 and 1 that is a relative measure of the angles at the element’s nodes. A value of 1 indicates a
perfect 90 degree angle between each of its edges. In most cases a value less than zero, or negative
Jacobian element, indicates an unusable mesh. Sculpt’s default settings try to achieve a minimum Scaled
Jacobian of 0.2, which is normally usable in most analysis. The following discussion provides several
options for adjusting the model or Sculpt parameters to help improve mesh quality.

1. Locating poor mesh quality:When the Sculpt mesh has been imported back into CUBIT it is a
good idea to display the element quality. You can do this with variations of the following
commands:

quality hex all scaled jacobian
quality hex all draw mesh

2. Modifying the geometry: Zooming in to poor quality elements may reveal that the mesh does not
adequately represent the underlying geometry. In some cases you may 󱤏󱢑nd that small features, or
small gaps between parts may be on the order of the size of the Sculpt cell size. If these features
are not important to the analysis, you may consider using Cubit’s geometry modi󱤏󱢑cation tools to
remove features or close small gaps.

3. Modifying the cell size: In cases where small geometric features or gaps are important to the
simulation, it may be necessary to use a smaller base cell size. Use the size or autosize input
parameters or increase the numbers of intervals. Normally to adequately capture a feature you
would want the cell size to be no greater than about 1/3 to 1/2 the size of the smallest feature you
would want to represent in the simulation.

4. Turning on Pillowing for multiple materials: For models that have more than one material that
share an interface, unless the geometry is precisely aligned with the global axis, it is usually a good
idea to turn on pillowing. Pillowing automatically inserts an additional layer of hexes at interface
boundaries to improve mesh quality. Without pillowing may notice inverted or poor quality
elements at curve interfaces where 2 or more materials meet.

5. Modifying smoothing parameters: Sculpt includes a tiered approach to smoothing to improve
element quality. It starts by applying smoothing to all nodes in the mesh and progressively
restricts the smoothing operations to only those nodes that fall below a user-de󱤏󱢑ned scaled
Jacobian threshold. Default numbers of iterations and thresholds for each smoothing phase have
been tuned for general use, however it may be worthwhile to adjust these parameters. The three
smoothing phases include:
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a) Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach to improve
quality, but can result in degraded element quality if applied to excess. A 󱤏󱢑xed default of 2
iterations is applied to all hexes. Increasing the num_laplace parameter can improve some
cases, especially convex shapes.

b) Optimization Smoothing: Applied only to elements who’s scaled Jacobian falls below the
opt_threshold parameter (default 0.6) and their surrounding elements. This approach
uses a more expensive optimization technique to improve regions of elements
simultaneously. The max_opt_iters parameter can control the maximum number of
iterations applied (default is 5). Iterations will terminate, however, if no further
improvement is detected. Because this method optimizes node locations simultaneously,
neighboring nodes with competing optimum can sometimes limit mesh quality.

c) Spot Optimization: Also known as parallel coloring, is applied only to elements who’s
element quality falls below the pcol_threshold parameter (default 0.2). This technique
is the most expensive of the techniques, but focusses only on nodes that are immediately
adjacent to poor quality hexes. Each node is smoothed independently of its neighbors, and
may require a high number of iterations using the max_pcol_iters to achieve desired
results. Increasing the pcol_threshold and max_pcol_itersmay yield improved
results.

Observing the mesh quality output to the command line following each smoothing iteration can
provide some insight on the ef󱤎ect of modifying smoothing parameters.

6. Creating degenerate hexes: Some geometries will not permit a usable mesh with a traditional
all-hex mesh. Sculpt includes the option to automatically and selectively collapse element edges to
improve low-quality elements. The max_deg_iters and the deg_threshold values are used
to control the creation of degenerates. Degenerate elements are treated as standard hex elements,
but use repeated nodes in the eight-node connectivity array.

7. Creating hex-dominant mesh: Another option for avoiding mesh quality issues is to generate a
few tet elements in the mesh using the htet option. With this option you can specify a scaled
Jacobian threshold value below which hexes will be converted to tet elements. The interface
between hex and tet elements is managed by an automatically de󱤏󱢑ned set of nodesets and sidesets
that describe where multi-point constraints will be applied.

8. Defeaturing: The defeature option does an initial 󱤏󱢑lter on the cells of the base grid and attempts
to reassign the material ID for cells that meet certain criteria. These are cases where a small
grouping of cells form a small volume, or where protrusions exist that would otherwise be
dif󱤎icult or impossible to mesh with good quality elements. By reassigning the cells in these
locations, in many cases it will allow the mesh to be acceptable. This operation may result in small
changes to the boundary or surface de󱤏󱢑nitions, however usually small enough to still be a
reasonable approximation.
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3. SCULPT APPLICATION

This chapter describes the Sculpt application, a separate companion application to Cubit designed to
run in parallel for generating all-hex meshes of complex geometry. Sculpt was developed as a separate
application so that it can be run independently from Cubit on high performance computing platforms.
It was also designed as a separable software library so it can be easily integrated as an in-situ meshing
solution within other codes. As installed with Cubit, Sculpt can be set up and run directly from Cubit,
in a batch process from the unix command line or from a user-de󱤏󱢑ned input 󱤏󱢑le. This chapter describes
the input 󱤏󱢑le and command line syntax for the Sculpt Application when running in batch mode.

Two examples of running sculpt from the operating system command line are included in Appendix P.
Appendix Q also includes example geometry and diatom 󱤏󱢑les that can be used for the examples.

3.1. SCULPT SYSTEM REQUIREMENTS

Sculpt is currently built for windows, linux and mac operating systems. Current supported OS versions
should be the same as those supported by Cubit. It is designed to take advantage of 64 bit multicore and
distributed memory computers, using open-mpi as the basis for parallel communications.

3.2. RUNNING SCULPT

Sculpt can be run using one of two executables:

• psculpt: requires the use of mpiexec to start the process. Number of processors to use is
speci󱤏󱢑ed by the -np argument to mpiexec. psculpt and its input parameters are also used as
input to mpiexec. For example:

mpiexec -np 8 psculpt -stl myfile.stl -cs 0.5

If appropriate system paths have not been set, you may need to use full paths when referring to
mpiexec and psculpt.

• sculpt: This application assumes that mpiexec is included in the standard CUBIT installation
directory. The number of processors to use is speci󱤏󱢑ed by the -j option. For example:

sculpt -j 8 -stl myfile.stl -cs 0.5
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If the -j option is not used, sculpt will default to a single processor for execution. The -mpi
option can also be used with the sculpt application to indicate a speci󱤏󱢑c mpi installation that is
not included with CUBIT. For example:

sculpt -j 8 -mpi /path/to/mpiexec -stl myfile.stl -cs 0.5

If the path speci󱤏󱢑ed by the -mpi option does not exist or the mpi version is incompatible, sculpt
will attempt to use the local CUBIT-installed mpiexec or else the system mpiexec in the PATH
environment.

3.3. SCULPT HELP

Help on Sculpt input syntax and command descriptions are available by using the -h or –-help
options on the command line. For example:

sculpt -h

will display the command summary shown in section 3.4. This shows all commands available in Sculpt
along with a brief description. For a full description of speci󱤏󱢑c commands, use the command after the
-h. For example:

sculpt -h diatom_file

will display details about the diatom_file option. Note that the documentation contained in this
report will be the same as that displayed with the -h or –-help options.

3.4. SCULPT COMMAND SUMMARY

Following is a listing of the available input commands to either sculpt or psculpt. When used from the
unix command line, commands may be issued using the short form argument, designated with a single
dash(-), or with the longer form, designated with two dashes (–). When used in an input 󱤏󱢑le, only the
long formmay be used, omitting the two dashes (–). The following chapters describe these options in
more detail

29



Usage: psculpt [options]
--help,-h <args>Displays this information

Process Control --process -pc
--num_procs -j <arg> Number of processors requested
--input_file -i <arg> File containing user input data
--debug_processor -D <arg> Sleep to attach to processor for debug
--debug_flag -dbf <arg> Dump debug info based on flag
--quiet -qt Suppress output
--print_input -pi Print input values and defaults then stop
--version -vs Print version number and exit
--threads_process -tpp <arg> Number of threads per process
--iproc -ip <arg> Number of processors in I direction
--jproc -jp <arg> Number of processors in J direction
--kproc -kp <arg> Number of processors in K direction
--periodic -per Generate periodic mesh
--check_periodic -cp <arg> Check for periodic geometry
--periodic_axis -pax <arg> Axis periodicity is about
--periodic_nodesets -pns <arg> Nodesets ids of master/slave nodesets
--build_ghosts -bg Write ghost layers to exodus files for debug
--vfrac_method -vm <arg> Set method for computing volume fractions

Input Data Files --input -inp
--stl_file -stl <arg> Input STL file
--diatom_file -d <arg> Input Diatom description file
--input_vfrac -ivf <arg> Input from Volume Fraction file base name
--input_micro -ims <arg> Input from Microstructure file
--input_cart_exo -ice <arg> Input from Cartesian Exodus file
--input_spn -isp <arg> Input from Microstructure spn file
--spn_xyz_order -spo <arg> Ordering of cells in spn file
--lattice -l <arg> STL Lattice Template File

Output --output -out
--exodus_file -e <arg> Output Exodus file base name
--volfrac_file -vf <arg> Output Volume Fraction file base name
--quality -Q Dump quality metrics to file
--export_comm_maps -C Export parallel comm maps to debug exo files
--write_geom -G Write geometry associativity file
--write_mbg -M Write mesh based geometry file <beta>
--compare_volume -cv Report vfrac and mesh volume comparison

Overlay Grid Specification --overlay -ovr
--nelx -x <arg> Num cells in X in overlay Cartesian grid
--nely -y <arg> Num cells in Y in overlay Cartesian grid
--nelz -z <arg> Num cells in Z in overlay Cartesian grid
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--xmin -t <arg> Min X coord of overlay Cartesian grid
--ymin -u <arg> Min Y coord of overlay Cartesian grid
--zmin -v <arg> Min Z coord of overlay Cartesian grid
--xmax -q <arg> Max X coord of overlay Cartesian grid
--ymax -r <arg> Max Y coord of overlay Cartesian grid
--zmax -s <arg> Max Z coord of overlay Cartesian grid
--cell_size -cs <arg> Cell size (nelx, nely, nelz ignored)
--align -a Automatically align geometry to grid
--bbox_expand -be <arg> Expand tight bbox by percent
--input_mesh -im <arg> Input Base Exodus mesh
--input_mesh_blocks -imb <arg> Block ids of Input Base Exodus mesh
--input_mesh_material -imm <arg> Material definition with input mesh
--input_mesh_pamgen -imp <arg> Input Base mesh defined by Pamgen

Mesh Type --type -typ
--stair -str <arg> Generate Stair-step mesh
--mesh_void -V <arg> Mesh void
--htet -ht <arg> Convert hexes below quality threshold to tets
--trimesh -tri Generate tri mesh of geometry surfaces
--tetmesh -tet <arg> Under Development
--deg_threshold -dg <arg> Convert hexes below threshold to degenerates
--max_deg_iters -dgi <arg> Maximum number of degenerate iterations
--htet_material -htm <arg> Convert hexes in given materials to tets
--htet_transition -htt <arg> Transition method between hexes and tets
--htet_pyramid -htp <arg> Local transition pyramid
--htet_tied_contact -htc <arg> Local transition tied contact
--htet_no_interface -htn <arg> Local transition none

Boundary Conditions --boundary_condition -bc
--void_mat -VM <arg> Void material ID (when mesh_void=true)
--gen_sidesets -SS <arg> Generate sidesets
--free_surface_sideset -FS <arg> Free Surface Sideset
--match_sidesets -mss <arg> Sidesets ids of matching pairs

Adaptive Meshing --adapt -adp
--adapt_type -A <arg> Adaptive meshing type
--adapt_threshold -AT <arg> Threshold for adaptive meshing
--adapt_levels -AL <arg> Number of levels of adaptive refinement
--adapt_export -AE Export exodus mesh of refined grid

Smoothing --smoothing -smo
--smooth -S <arg> Smoothing method
--csmooth -CS <arg> Curve smoothing method
--laplacian_iters -LI <arg> Number of Laplacian smoothing iterations
--max_opt_iters -OI <arg> Max. number of parallel Jacobi opt. iters.
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--opt_threshold -OT <arg> Stopping criteria for Jacobi opt. smoothing
--curve_opt_thresh -COT <arg> Min metric at which curves won’t be honored
--max_pcol_iters -CI <arg> Max. number of parallel coloring smooth iters.
--pcol_threshold -CT <arg> Stopping criteria for parallel color smooth
--max_gq_iters -GQI <arg> Max. number of guaranteed quality smooth iters.
--gq_threshold -GQT <arg> Guaranteed quality minimum SJ threshold

Mesh Improvement --improve -imp
--pillow -p <arg> Set pillow criteria (1=surfaces)
--pillow_surfaces -ps Turn on pillowing for all surfaces
--pillow_curves -pc Turn on pillowing for bad quality at curves
--pillow_boundaries -pb Turn on pillowing at domain boundaries
--pillow_curve_layers -pcl <arg> Number of elements to buffer at curves
--pillow_curve_thresh -pct <arg> S.J. threshold to pillow hexes at curves
--pillow_smooth_off -pso Turn off smoothing following pillow operations
--capture -c <arg> Project to facet geometry <beta>
--capture_angle -ca <arg> Angle at which to split surfaces <beta>
--capture_side -sc <arg> Project to facet geometry with surface ID
--defeature -df <arg> Apply automatic defeaturing
--min_vol_cells -mvs <arg> Minimum number of cells in a volume
--defeature_bbox -dbb Defeature Filtering at Bounding Box
--defeature_iters -dfi <arg> Maximum Number of Defeaturing Iterations
--thicken_material -thm <arg> Expand a given material into surrounding cells
--micro_expand -me <arg> Expand Microstructure grid by N layers
--micro_shave -ms Remove isolated cells at micro. boundaries
--remove_bad -rb <arg> Remove hexes with Scaled Jacobian < threshold

Mesh Transformation --transform -tfm
--xtranslate -xtr <arg> Translate final mesh coordinates in X
--ytranslate -ytr <arg> Translate final mesh coordinates in Y
--ztranslate -ztr <arg> Translate final mesh coordinates in Z
--scale -scl <arg> Scale final mesh coordinates by constant

Boundary Layers --boundary_layer -bly
--begin -beg <arg> Begin specification blayer or blayer_block
--end -zzz <arg> End specification blayer or blayer_block
--material -mat <arg> Boundary layer material specification
--num_elem_layers -nel <arg> Number of element layers in blayer block
--thickness -th <arg> Thickness of first element layer in block
--bias -bi <arg> Bias of element thicknesses in blayer block

Use --help <args> or -h <args> to display detailed help on any option.
Use "all" argument to display help for all options.
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4. PROCESS CONTROL

Options for controlling the execution of Sculpt. Sculpt is a parallel application that uses MPI to
distribute and build the hex mesh on multiple processors. The -j or num_procs option is normally used
to specify the number of processors to use. Sculpt will write a separate exodus 󱤏󱢑le for each processor,
which can be joined into a single 󱤏󱢑le using the epu utility. While any number of processors may be used,
you would normally use a -j value less than or equal to the number of cores available on your
hardware.

Sculpt options can be speci󱤏󱢑ed directly from the command line using the "short" commands, or from an
input 󱤏󱢑le where the longer forms of the commands are used. Since an input 󱤏󱢑le can be commented and
modi󱤏󱢑ed, it is generally the recommended method for running Sculpt.

Process Control --process -pc
--num_procs -j <arg> Number of processors requested
--input_file -i <arg> File containing user input data
--debug_processor -D <arg> Sleep to attach to processor for debug
--debug_flag -dbf <arg> Dump debug info based on flag
--quiet -qt Suppress output
--print_input -pi Print input values and defaults then stop
--version -vs Print version number and exit
--threads_process -tpp <arg> Number of threads per process
--iproc -ip <arg> Number of processors in I direction
--jproc -jp <arg> Number of processors in J direction
--kproc -kp <arg> Number of processors in K direction
--periodic -per Generate periodic mesh
--check_periodic -cp <arg> Check for periodic geometry
--periodic_axis -pax <arg> Axis periodicity is about
--periodic_nodesets -pns <arg> Nodesets ids of master/slave nodesets
--build_ghosts -bg Write ghost layers to exodus files for debug
--vfrac_method -vm <arg> Set method for computing volume fractions
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4.1. NUMBER OF PROCESSORS

Command: num_procs Number of processors requested

Input file command: num_procs <arg>
Command line options: -j <arg>
Argument Type: integer > 0

Command Description:

The number of processors that Sculpt will use to generate the mesh. The Cartesian domain will be
divided into roughly equal sizes based on this value and the mesh for each portion of the domain
generated independently. Continuity across processor boundaries is maintained withMPI (Message
Passing Interface). Each processor will write a separate Exodus II 󱤏󱢑le to disk containing its portion of the
domain. The Sandia SEACAS tool, "EPU" can be used to join parallel 󱤏󱢑les into a single 󱤏󱢑le.

If not speci󱤏󱢑ed on the command line, the number of processors used will be 1.

For additional control on the arrangement of processor domains see arguments iproc, jproc, kproc.

4.2. INPUT FILE

Command: input_file File containing user input data

Input file command: input_file <arg>
Command line options: -i <arg>
Argument Type: file name with path

Command Description:

Rather than specifying a complicated series of arguments on the command line, an input 󱤏󱢑le may also
be used. An input 󱤏󱢑le is a simple text 󱤏󱢑le containing all arguments and parameters to be used in the
current sculpt run. Input 󱤏󱢑les are normally expected to have a ".i" extension. Arguments used in the
input 󱤏󱢑le are limited to the Long Names indicated for each command.

User comments can also be made anywhere in the 󱤏󱢑le but must follow a "$" sign. The argument
assignments that are intended to be read must be contained within a "begin sculpt" and "end sculpt"
block. All arguments may use upper or lower case and can optionally use "=" between the command
and its parameter. The following is an example input 󱤏󱢑le:
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BEGIN SCULPT
stl_file = "mygeom.stl"
cell_size = 0.5
exodus_file = "mymesh"
mesh_void = true

END SCULPT

The following is an example of using an input 󱤏󱢑le with sculpt:

sculpt -j 4 -i myinput.i

Note that the number of processors (-j) should always be used on the command line and cannot be
included in the input 󱤏󱢑le. Relative or absolute paths for 󱤏󱢑les may also be used.

4.3. DEBUG PROCESSOR

Command: debug_processor Sleep to attach to processor for debug

Input file command: debug_processor <arg>
Command line options: -D <arg>
Argument Type: integer >= 0

Command Description:

Used for debugging. All processes will sleep until the designated process is attached to a debugger.
Note: value of 0 corresponds to 󱤏󱢑rst processor, 1 to second, etc.

4.4. DEBUG FLAG

Command: debug_flag Dump debug info based on flag

Input file command: debug_flag <arg>
Command line options: -dbf <arg>
Argument Type: integer >= 0

Command Description:

Used for debugging. Set 󱤐󱤔ag to dump speci󱤏󱢑c info based on the following:

0Default, No debug output
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1Dump processor lost node info

2 Export Non-manifold resolution state as exodus 󱤏󱢑le after each inner and outer iteration.

3 Export Defeature state as exodus 󱤏󱢑le after each inner and outer iteration.

4 Export the Thickened state as exodus 󱤏󱢑le after each material has been thickened.

Guaranteed Quality:

5Turn of󱤎 initial minimizer projection.

6Use Non-manifold reversal case

7 Combine debug_󱤐󱤔ag 5 and 6

8Use guaranteed quality laplacian color smoothing

9 Combine debug_󱤐󱤔ags 5,6 and 8

4.5. QUIET

Command: quiet Suppress output

Input file command: quiet
Command line options: -qt

Command Description:

Suppress any output to the command line from Sculpt as it is running.

4.6. PRINT INPUT

Command: print_input Print input values and defaults then stop

Input file command: print_input
Command line options: -pi

Command Description:

Display all input parameters and defaults used in the current Sculpt run to the output window and then
stop. No mesh (or volume fractions) will be generated.
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4.7. VERSION

Command: version Print version number and exit

Input file command: version
Command line options: -vs

Command Description:

Prints Sculpt version information and exits.

4.8. THREADS PER PROCESSOR

Command: threads_process Number of threads per process

Input file command: threads_process <arg>
Command line options: -tpp <arg>
Argument Type: integer > 0

Command Description:

This option is currently experimental and under development. Sculpt may use shared memory
parallelism to improve performance. When built with the Kokkos library, some algorithms in sculpt
will use shared memory parallel threads in addition toMPI distributed memory parallelism (MPI+X).
Currently this option is implemented only for surface and volume Laplacian smoothing algorithms.
This option may not be available requiring a custom build of sculpt to be used. Check with developers
if you would like to use this option.

4.9. NUMBER OF PROCESSORS IN I

Command: iproc Number of processors in I direction

Input file command: iproc <arg>
Command line options: -ip <arg>
Argument Type: integer > 0
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Command Description:

Arguments iproc, jproc and kproc provide user control over the processor decomposition in I, J, and K
directions respectively. iproc * jproc * kproc must equal the number of processors speci󱤏󱢑ed on the
command line using the -j option.

4.10. NUMBER OF PROCESSORS IN J

Command: jproc Number of processors in J direction

Input file command: jproc <arg>
Command line options: -jp <arg>
Argument Type: integer > 0

Command Description:

Arguments iproc, jproc and kproc provide user control over the processor decomposition in I, J, and K
directions respectively. iproc * jproc * kproc must equal the number of processors speci󱤏󱢑ed on the
command line using the -j option.

4.11. NUMBER OF PROCESSORS IN K

Command: kproc Number of processors in K direction

Input file command: kproc <arg>
Command line options: -kp <arg>
Argument Type: integer > 0

Command Description:

Arguments iproc, jproc and kproc provide user control over the processor decomposition in I, J, and K
directions respectively. iproc * jproc * kproc must equal the number of processors speci󱤏󱢑ed on the
command line using the -j option.
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4.12. GENERATE PERIODIC MESH

Command: periodic Generate periodic mesh

Input file command: periodic
Command line options: -per

Command Description:

Generates a periodic mesh for either Cartesian or unstructured mesh input. Ensures that resulting mesh
nodes and faces are precisely matching on opposite sides of the mesh.

Unstructured mesh input:When used with the –input_mesh option opposite sides of the mesh
must be identi󱤏󱢑ed using pairs of leading and trailing nodesets using the –periodic_nodesets (-pns)
option. Nodes in the nodeset pairs must be separated by a constant translation or rotation. If a rotation
is used between leading and trailing nodesets, the –periodic_axis (-pax) option must be used. If not
used, then the transformation is assumed to be pure translation. Input geometry is assumed to be
periodic with a period equal to that of the input mesh. Results from non-periodic geometry used with
the periodic option may be unpredictable. The following is an example of an input 󱤏󱢑le that uses the
periodic option on an unstructured input mesh:

BEGIN SCULPT
diatom_file = geometry_file.diatom
input_mesh = input_exodus_file.g
exodus_file = output_exodus_file
smooth = to_geometry
capture = 5
capture_angle = 10
free_surface_sideset = 1000
gen_sidesets = input_mesh_and_free_surfaces
periodic = true
periodic_nodesets = 3224 3225
periodic_axis = 0 0 0 0 1 0

END SCULPT

Cartesian grid input: This option is often used for computational materials modeling. Sculpt
can generate a true periodic mesh in a representative volume element (RVE) where meshes on all
opposite faces of the RVE will precisely match. When used with a Cartesian grid, the
–periodic_nodesets and –periodic_axis options are ignored. The following is an example
sculpt input 󱤏󱢑le that utilizes the –periodic option on a Cartesian grid with geometry de󱤏󱢑ned in a
diatom 󱤏󱢑le. It also utilizes the –adapt_type option to automatically re󱤏󱢑ne and the gen_sidesets =
RVE option to generate sidesets at the six RVE faces.
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BEGIN SCULPT
diatom_file = spheres_periodic.diatom
xmin = -18.705510
ymin = -18.705510
zmin = -18.705510
xmax = 18.705510
ymax = 18.705510
zmax = 18.705510
nelx = 38
nely = 38
nelz = 38
periodic = true
defeature = 1
min_vol_cells = 10
adapt_type = vfrac_average
adapt_levels = 2
adapt_threshold = 0.00001
gen_sidesets = RVE
exodus_file = spheres_periodic
mesh_void = true

END SCULPT

Geometry Requirements: In order to generate a valid periodic mesh, the input geometry must also
be periodic and the bounding box parameters should span exactly one period of the geometry. To check
the periodicity of the geometry and prescribed bounding box, see the check_periodic option.

Note: The resulting mesh at the boundaries of the Cartesian grid (RVE) will not be projected to the
planes of the bounding box. The result will be a "ragged" boundary in order to maintain periodicity
between nodes on opposite sides of the mesh. Also note that results from the use of the periodic
option may be unde󱤏󱢑ned or unstable when used with non-periodic input geometry.
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Figure 4-1. Periodic geometry used for example described in di-
atom file. RVE boundary shown with respect to the geometry.

Figure 4-2. Resulting periodic mesh generated from example input.
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Figure 4-3. Six faces of the RVE from above example illustrating
periodicity on a 32 processor decomposition. Note that top three
images are a mirror image of the bottom three images.

4.13. CHECK FOR PERIODIC GEOMETRY

Command: check_periodic Check for periodic geometry

Input file command: check_periodic <arg>
Command line options: -cp <arg>
Argument Type: on, off, only
Input arguments: off (0)

on (1)
only (2)

Command Description:

When using the periodic option with a Cartesian base grid, the input geometry must be periodic with
respect to the grid bounding box in order to meet the minimum requirements of a valid periodic mesh.
The bounding box must span exactly one period in each dimension. If this requirement is not met, a
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valid mesh may still be generated, however, periodicity will not be guaranteed. The check_periodic
option is used to check this requirement.

Options:

• ON:The check_periodic option is ON by default to ensure periodicity is enforced. Sculpt will
fail if the geometry and bounding box do not meet the requirements for periodicity.

• OFF:Turning this option OFF will by-pass this check and attempt to generate the mesh even if
periodic requirements are not met.

• ONLY:The ONLY option will perform a check for periodic requirements and report diagnostics.
An exodus 󱤏󱢑le (or 󱤏󱢑les) will be produced with the name "check_periodic.0.0.x.x". A stair-step
mesh of the domain will be produced with an additional block 999 showing where periodicity is
not matched. Sculpt will immediately stop execution after producing the "check_periodic.0.0.x.x"
mesh. Note that 2 additional layers on all sides of the Cartesian grid will be present in the mesh.
These are used internally in Sculpt for parallel ghosting.

The check_periodic option is ignored if the periodic option is OFF or set to false.

4.14. PERIODIC MESH AXIS

Command: periodic_axis Axis periodicity is about

Input file command: periodic_axis <arg>
Command line options: -pax <arg>
Argument Type: six floating point values

Command Description:

For an unstructured base grid, speci󱤏󱢑es an axis about which the nodes in the master (leading) nodesets
will be rotated about to produce the slave (trailing) nodesets. Six 󱤐󱤔oating point numbers are speci󱤏󱢑ed,
the 󱤏󱢑rst three de󱤏󱢑ne the origin of the axis and the last three de󱤏󱢑ne the axis direction. This option must
be used with –periodic (-per), –periodic_nodesets (-pns), and –input_mesh (-im) options. If
the –periodic (-per) option is used without the –periodic_axis option, the transformation between
leading and trailing nodesets is assumed to be pure translation.
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4.15. PERIODIC NODESET IDS

Command: periodic_nodesets Nodesets ids of master/slave nodesets

Input file command: periodic_nodesets <arg>
Command line options: -pns <arg>
Argument Type: integer(s) >= 0

Command Description:

For an unstructured base grid, speci󱤏󱢑es the master-slave (leading-trailing) nodeset pairs. Master nodesets
should be able to be translated or rotated about a speci󱤏󱢑ed axis to produce the nodes in the slave
nodesets. Nodesets must be speci󱤏󱢑ed in pairs, where each master (leading) nodeset corresponds to a
single slave (trailing) nodeset. Each nodeset pair must maintain an identical translation or rotation. If a
rotation is used, the axis and origin of rotation must be speci󱤏󱢑ed with the –periodic_axis (-pax)
option. This option should be used with –periodic (-per), –periodic_nodesets (-pns), and
–input_mesh (-im) options.)

Figure 4-4. Unstructured input mesh used to generate periodic
mesh. Matching leading and training nodesets are defined in the
exodus file.

4.16. WRITE THE GHOST LAYERS FOR DEBUG

Command: build_ghosts Write ghost layers to exodus files for debug

Input file command: build_ghosts
Command line options: -bg
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Command Description:

If set, this option will dump the ghost hexes at the boundaries of processor domains to the exodus 󱤏󱢑les.
This is used only for debugging.

4.17. VOLUME FRACTION CALCULATION
METHOD

Command: vfrac_method Set method for computing volume fractions

Input file command: vfrac_method <arg>
Command line options: -vm <arg>
Argument Type: integer (1, 2)
Input arguments: cth (0)

cth (1)
r3d (2)

Command Description:

Sets the method used for computing volume fractions from geometry input. Two options are currently
available:

CTH (1): The default method. It uses the CTH third party library from Sandia Laboratories for
approximating intersections using an adaptive ray 󱤏󱢑ring method to determine inside-outside status of
multiple locations within a grid cell. This method can be used with STL and all valid primitive types
de󱤏󱢑ned by the diatom format.

R3D (2): Uses the R3D third party library developed by Los Alamos Laboratories. Machine precision
intersection calculations are performed to generate accurate volume fractions from the STL description.
This method is valid for STL and diatom input packages specifying STL input 󱤏󱢑les. Non STL format
geometry de󱤏󱢑ned in the diatom 󱤏󱢑le will be ignored for this format.
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5. INPUT DATA FILES

Options for specifying input 󱤏󱢑les to Sculpt. Sculpt uses a method for representing geometry based upon
volume fractions de󱤏󱢑ned on a Cartesian or unstructured grid. Sculpt will accept facet-based (STL) or
analytic (diatom) geometry, but will 󱤏󱢑rst convert the input geometry to the required volume fraction
description before generating the hexahedral mesh. Various formats for volume fraction data can also be
imported directly into Sculpt and used as the basis for hex meshing. The following formats for
geometry are currently supported in Sculpt:

• STL (stl_󱤏󱢑le)

• Diatom (diatom_󱤏󱢑le)

• Volume Fractions

– Exodus element variables (import_vfrac)

– Exodus blocks (import_cart_exo)

– Ascii Voxel Data (import_spn)

– Ascii Volume Fraction Data (import_micro)

Input Data Files --input -inp
--stl_file -stl <arg> Input STL file
--diatom_file -d <arg> Input Diatom description file
--input_vfrac -ivf <arg> Input from Volume Fraction file base name
--input_micro -ims <arg> Input from Microstructure file
--input_cart_exo -ice <arg> Input from Cartesian Exodus file
--input_spn -isp <arg> Input from Microstructure spn file
--spn_xyz_order -spo <arg> Ordering of cells in spn file
--lattice -l <arg> STL Lattice Template File
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5.1. STL FILE

Command: stl_file Input STL file

Input file command: stl_file <arg>
Command line options: -stl <arg>
Argument Type: file name with path

Command Description:

File name of a single STL (facet geometry) 󱤏󱢑le to be used as input. Either an stl_󱤏󱢑le or diatom_󱤏󱢑le
designation should be included to run Sculpt. The stl_󱤏󱢑le option will support a single STL 󱤏󱢑le. To use
multiple STL 󱤏󱢑les, where each 󱤏󱢑le represents a dif󱤎erent material, use the diatom_󱤏󱢑le 󱤏󱢑le option where
multiple 󱤏󱢑le names may be speci󱤏󱢑ed.

It is recommended that STL 󱤏󱢑les used as input to Sculpt be "water-tight". While in many cases
non-watertight geometries will be successful, unexpected or incorrect results may result. It is
recommended practice to use Cubit to 󱤏󱢑rst import the STL geometry and allow the sculpt parallel
command to write a new STL geometry 󱤏󱢑le for use in Sculpt. Cubit’s sculpt parallel command will
attempt to stitch and repair any triangle facets that are not completely closed. Other commercial tools
are available for STL geometry that may be ef󱤎ective in repairing the geometry prior to use in Sculpt.

5.2. DIATOM FILE

Command: diatom_file Input Diatom description file

Input file command: diatom_file <arg>
Command line options: -d <arg>
Argument Type: file name with path

Command Description:

File name of a diatom 󱤏󱢑le to be used as input to Sculpt. Both stl_󱤏󱢑le and diatom_󱤏󱢑le cannot be used
simultaneously. A diatom 󱤏󱢑le is a constructive solid geometry description containing primitives for
generating a full geometric de󱤏󱢑nition of the model. Diatoms are commonly used as input to Sandia’s
CTH and Alegra codes. Multiple STL 󱤏󱢑les can also be de󱤏󱢑ned in a Diatom 󱤏󱢑le. The following is a
simple example of a diatom 󱤏󱢑le that would read 3 dif󱤎erent STL 󱤏󱢑les:

diatoms
package ’blue_material’

material 1
insert stl

file = ’blue_part1.stl’
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endinsert
insert stl

file = ’blue_part2.stl’
endinsert

endpackage
package ’red_material’

material 2
insert stl

file = ’red_part1.stl’
endinsert

endpackage
enddiatom

Note that the 󱤏󱢑rst two 󱤏󱢑les, blue_part1.stl and blue_part2.stl belong to the same material. As a result,
elements generated within the geometry of these 󱤏󱢑les will belong to block 1. Likewise, the elements
generated within the geometry of red_part1.stl will belong to block 2.

Bitmap Files

The Diatom format will also support bitmap 󱤏󱢑les. These are binary 󱤏󱢑les that set each cell either on or of󱤎
for the speci󱤏󱢑ed material. The following is an example diatom speci󱤏󱢑cation for a bitmap 󱤏󱢑le. Note that
the bitmap speci󱤏󱢑cation includes nx, ny, nz dimensions for the size of the input 󱤏󱢑le.

diatoms
package ’Skull’

material 1
insert bitmap

file = ’skull_bitmap_file’
nx = 680
ny = 408
nz = 236

endinsert
endpackage

enddiatom
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Figure 5-1. Example mesh generated with Diatom bitmap option

For a full description of the diatom format see the CTH or Alegra documentation.

D. A. Crawford, A. L. Brundage, E. N. Harstad, K. Ruggirello, R. G. Schmitt, S. C. Schumacher and J.
S. Simmons, "CTHUserâĂŹs Manual and Input Instructions, Version 10.3", CTHDevelopment
Project, Sandia National Laboratories, Albuquerque, NewMexico 87185, February 14, 2013

5.3. INPUT VOLUME FRACTION FILE

Command: input_vfrac Input from Volume Fraction file base name

Input file command: input_vfrac <arg>
Command line options: -ivf <arg>
Argument Type: base file name with path

Command Description:

Sculpt can optionally take an exodus 󱤏󱢑le containing volume fraction data stored as element variables.
Normally the exodus 󱤏󱢑le has initially been written using the –volfrac_󱤏󱢑le (-vf) option. Since the exodus
󱤏󱢑le will be a Cartesian grid spread across multiple processors, the base 󱤏󱢑lename for the parallel series of
exodus 󱤏󱢑les is used as the argument for this command. The input volume fraction 󱤏󱢑le(s) would be used
instead of an STL or diatom 󱤏󱢑le. Since computing volume fractions from geometry can be time
consuming, precomputing the volume fractions and reading them from a 󱤏󱢑le can be advantageous if
multiple meshes are to be generated from the same volume fraction data.
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5.4. INPUT MICROSTRUCTURE FILE

Command: input_micro Input from Microstructure file

Input file command: input_micro <arg>
Command line options: -ims <arg>
Argument Type: file name with path

Command Description:

Figure 5-2. Example all-hex mesh of microstructure

Amicrostructure 󱤏󱢑le is an ascii text 󱤏󱢑le containing volume fraction data for each cell of a Cartesian grid.
The format for this 󱤏󱢑le includes header information followed by data for each cell. The following is an
example:

TITLE = triple line system
VARIABLES = x y z, phi_1, phi_2, phi_3
ZONE i = 2 , j = 2 , k = 2
0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
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1.0000 0.0000 0.0000 0.3333 0.3333 0.3334
0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
1.0000 1.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 1.0000 0.2000 0.4000 0.4000
1.0000 0.0000 1.0000 0.6000 0.1000 0.3000
0.0000 1.0000 1.0000 0.0000 0.0000 1.0000
1.0000 1.0000 1.0000 0.9000 0.0000 0.1000

The header information should contain the following:

TITLE: any descriptive character string

VARIABLES: a list of variables separated by spaces or commas. It should include x, y, z as the 󱤏󱢑rst three
variable names. The remaining names are arbitrary. The number of variable names listed must
correspond to the number of data values for each cell of the Cartesian grid.

ZONE: Specify the number of cells in the i, j and k directions (corresponding to x, y, and z
respectively)

The body of the 󱤏󱢑le will contain one line per cell of the grid. The 󱤏󱢑rst three values correspond to the
centroid location of a cell in the grid. The remaining values represent volume fractions for the cell for
each variable listed. The sum of the volume fractions for each individual cell should be 1.0

Currently this format assumes that cell sizes are exactly 1.0 x 1.0 x 1.0 and the minimum cell centroid
location is always 0.0, 0.0, 0.0. This results in a Cartesian grid with minimum coordinate = (-0.5, -0.5,
-0.5) and maximum coordinate = (i-0.5, j-0.5, k-0.5). If a size other than 1x1x1 is required consider using
the scale and/or translate options.

Example usage of this command is as follows:

sculpt -j 8 -ims my_micro_file.tec -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been de󱤏󱢑ned.
These include:

--smooth 9 (surface smoothing option - no surface projection)
--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but may not adhere
strictly to the volume fraction geometric de󱤏󱢑nition. To over-ride the defaults, consider using the
following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 5 (curve smoothing option - projection to interpolated curve)
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Pillowing: For most 3Dmodels it is recommended using pillowing since triple junctions (curves with at
least 3 adjacent materials) will typically be de󱤏󱢑ned where malformed hex elements would otherwise be
generated. Surface pillowing (option 1) is usually suf󱤎icient to remove poor quality elements at triple
junctions.

Figure 5-3. Pillows (hex layers) inserted at surfaces to improve
element quality around curves. Note mesh quality at curve be-
tween surfaces A and B.

5.5. INPUT CARTESIAN EXODUS FILE

Command: input_cart_exo Input from Cartesian Exodus file

Input file command: input_cart_exo <arg>
Command line options: -ice <arg>
Argument Type: file name with path

Command Description: An exodus mesh containing a Cartesian grid of elements can also be used as the
source of a sculpt mesh. For this option the following conditions must be met:
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Figure 5-4. Example Cartesian Exodus file and the resulting hex mesh.

1. A single (non-parallel) exodus II format 󱤏󱢑le.

2. Contains only hex elements con󱤏󱢑gured as a Cartesian grid.

3. All hex elements must be exactly equilateral cubes.

4. Each hex element has been assigned to exactly one block. (Any number of blocks may be de󱤏󱢑ned
in the 󱤏󱢑le)

Provided these conditions are met, sculpt will treat each block as a separate material and generate a
smooth conforming mesh between the materials. This option is useful for converting a stair-step mesh
into a smooth conforming mesh. The resulting sculpt mesh will have the same dimensions as the
original exodus mesh, but will add layers of hexes at material interfaces.

Example usage of this command is as follows:

sculpt -j 8 -ice my_cartesian_file.e -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been de󱤏󱢑ned.
These include

--smooth 9 (surface smoothing option - no surface projection)
--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but may not adhere
strictly to the volume fraction geometric de󱤏󱢑nition. To over-ride the defaults, consider using the
following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 5 (curve smoothing option - projection to interpolated curve)

Pillowing: For most 3Dmodels it is recommended using pillowing since triple junctions (curves with at
least 3 adjacent materials) will typically be de󱤏󱢑ned where malformed hex elements would otherwise be
generated. Surface pillowing (option 1) is usually suf󱤎icient to remove poor quality elements at triple
junctions.
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5.6. INPUT MICROSTRUCTURE SPN FILE

Command: input_spn Input from Microstructure spn file

Input file command: input_spn <arg>
Command line options: -isp <arg>
Argument Type: file name with path

Command Description:

A .spn 󱤏󱢑le is an optional method for importing volume fraction data into sculpt for meshing. This
format is a simple ascii text 󱤏󱢑le containing one integer per cell of a Cartesian grid. Each integer represents
a unique material identi󱤏󱢑er. Any number of materials may be used, however for practical purposes, the
number of unique materials should not exceed more than about 50 for reasonable performance.

An example 󱤏󱢑le containing a 3 x 3 x 3 grid with 2 materials may be de󱤏󱢑ned as follows:

1 1 2 1 2 1 1 1 1
1 2 2 1 2 2 1 1 2
2 1 1 1 2 1 1 2 2

Any unique integer may be used to identify a material. All cells with the same ID will be de󱤏󱢑ned as a
continuous block with the same exodus block ID in the 󱤏󱢑nal mesh. All integers should be separated by a
space or newline. The number of integers in the 󱤏󱢑le should exactly correspond to the size of the
Cartesian grid. The dimensions of the Cartesian grid must be speci󱤏󱢑ed on the command line as part of
the input. The following is an example:

sculpt -j 8 -x 10 -y 24 -z 15 -isp "my_spn_file.spn" -p 1

The default order of the cells in the input 󱤏󱢑le will be read according to the following schema:

for (i=0; i<nx; i++)
for (j=0; j<ny; j++)

for (k=0; k<nz; k++)
// read next value from file

Where nx, ny, nz are the number of cells in each Cartesian direction. This ordering can be changed to
nz, ny, nx using the spn_xyz_order option. The initial size of the Cartesian grid will be exactly nx X ny
X nz with the minimum coordinate at (0.0, 0.0, 0.0). If a size other than the default is required,
consider using the scale and/or translate options.

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been de󱤏󱢑ned.
These include:
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--smooth 9 (surface smoothing option - no surface projection)
--csmooth 2 (curve smoothing option - hermite interpolation)

These options will generally provide a smoother curve and surface representation but may not adhere
strictly to the volume fraction geometric de󱤏󱢑nition. To over-ride the defaults, consider using the
following options:

--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 5 (curve smoothing option - projection to interpolated curve)

Pillowing: For most 3Dmodels it is recommended using pillowing since triple junctions (curves with at
least 3 adjacent materials) will typically be de󱤏󱢑ned where malformed hex elements would otherwise be
generated. Surface pillowing (option 1) is usually suf󱤎icient to remove poor quality elements at triple
junctions.

5.7. XYZ ORDERING OF CELLS IN SPN FILE

Command: spn_xyz_order Ordering of cells in spn file

Input file command: spn_xyz_order <arg>
Command line options: -spo <arg>
Argument Type: integer (0 to 5)
Input arguments: xyz (0)

xzy (1)
yxz (2)
yzx (3)
zxy (4)
zyx (5)

Command Description:

This option is valid with the ’input_spn’ option. The default order of the cells in the spn input 󱤏󱢑le will
be read according to the following schema:

for (i=0; i<nx; i++)
for (j=0; j<ny; j++)

for (k=0; k<nz; k++)
// read next value from file

If the spn 󱤏󱢑le has the cells in a dif󱤎erent order, use this option to specify the order. 0 (xyz) is the
default.
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5.8. STL LATTICE TEMPLATE FILE

Command: lattice STL Lattice Template File

Input file command: lattice <arg>
Command line options: -l <arg>
Argument Type: file name with path

Command Description:

Figure 5-5. Lattice geometry generated from exodus mesh.

Generate a lattice structure from a hex mesh. This command takes the name of an STL format template
󱤏󱢑le which de󱤏󱢑nes the lattice over a unit cube. To generate a valid lattice structure, the facets should be
symmetric to the three coordinate planes. The lattice structure will be transformed and copied into each
hex of the mesh. The result will be an STL 󱤏󱢑le containing lattice geometry for the mesh.

This option currently requires the name of an exodus mesh on which to de󱤏󱢑ne the lattice. Use the
–exodus_󱤏󱢑le (-e) option to specify its path. The current implementation is limited to one block,
however if a second block is contained in the Exodus 󱤏󱢑le it will be treated as a solid and stl facets will be
generated at the skin of the block.

The name of the output STL 󱤏󱢑le may also be de󱤏󱢑ned by using the –stl_󱤏󱢑le (-stl) option. If no stl 󱤏󱢑le is
speci󱤏󱢑ed, the output will use the name of the input exodus 󱤏󱢑le with the extension "_lattice.stl"
appended.

In addition to the full lattice geometry, an additional 󱤏󱢑le containing only the lattice from the 󱤏󱢑rst layer
of hexes will be written. This may be useful in reducing the size of the STL 󱤏󱢑le for visualization
purposes only. The name of this 󱤏󱢑le will be the name of the full STL geometry 󱤏󱢑le with the extension
".vis.stl" appended.

The following is an example input 󱤏󱢑le using the lattice option:
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BEGIN SCULPT
lattice = lattice_template.stl $contains unit cube with triangles
exodus_file = file.e $ hex mesh containing one or two element blocks
stl_file = file.stl $ name of output stl file

END SCULPT

Note that this option is currently limited to serial execution (-j 1)
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6. OUTPUT

Sculpt options for specifying output. The primary format for the hex meshes produced from Sculpt is
Exodus II. One exodus 󱤏󱢑le will be produced for each processor based upon the -j or num_procs
argument. If required, the exodus 󱤏󱢑les can be joined using the epu utility.

Other options for export include the ability to dump the volume fraction representation of the input
geometry as well as the ability to write geometry 󱤏󱢑les for use in Cubit.

Output --output -out
--exodus_file -e <arg> Output Exodus file base name
--volfrac_file -vf <arg> Output Volume Fraction file base name
--quality -Q Dump quality metrics to file
--export_comm_maps -C Export parallel comm maps to debug exo files
--write_geom -G Write geometry associativity file
--write_mbg -M Write mesh based geometry file <beta>
--compare_volume -cv Report vfrac and mesh volume comparison

6.1. EXODUS FILE

Command: exodus_file Output Exodus file base name

Input file command: exodus_file <arg>
Command line options: -e <arg>
Argument Type: character string

Command Description:

The base 󱤏󱢑le name of the resulting exodus mesh. Exodus 󱤏󱢑les will be in the form
<exodus_󱤏󱢑le>.e.<nproc>.<iproc>. For example, if the number of processors used is 3 and the
exodus_󱤏󱢑le argument is "model" the following 󱤏󱢑les would be written:

model.e.3.0
model.e.3.1
model.e.3.2
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If no exodus_󱤏󱢑le argument is used, output 󱤏󱢑les will be in the form
<stl_󱤏󱢑le>_diatom_results.e.<nprocs>.<iproc>. For example, if the number of processors used is 3 and
the stl_󱤏󱢑le (or diatom_󱤏󱢑le) is "model.stl", the following 󱤏󱢑les would be written:

model_diatom_results.e.3.0
model_diatom_results.e.3.1
model_diatom_results.e.3.2

A full path may be used when specifying the base exodus 󱤏󱢑le name, otherwise 󱤏󱢑les will be placed in the
current working directory. If the exodus_󱤏󱢑le option is not used, exodus 󱤏󱢑les will be placed in the same
directory as the input diatom or stl 󱤏󱢑le.

6.2. VOLUME FRACTION FILE

Command: volfrac_file Output Volume Fraction file base name

Input file command: volfrac_file <arg>
Command line options: -vf <arg>
Argument Type: character string

Command Description:

Optionally generate exodus 󱤏󱢑les containing a hex mesh of the Cartesian grid containing volume fraction
data as element variables. This series of parallel exodus 󱤏󱢑les can later be used as direct input to sculpt
using the –input_vfrac (-ivf) command. If not speci󱤏󱢑ed, no volume fraction data 󱤏󱢑les will be
generated.

6.3. QUALITY

Command: quality Dump quality metrics to file

Input file command: quality
Command line options: -Q

Command Description:

A 󱤏󱢑le named ’quality.csv’ will be created in the current working directory (or appended). Quality
metrics and other details of the run will be written to this 󱤏󱢑le. This option is currently of󱤎 by default.
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6.4. EXPORT COMMUNICATION MAPS

Command: export_comm_maps Export parallel comm maps to debug exo files

Input file command: export_comm_maps
Command line options: -C

Command Description:

Used for debugging and veri󱤏󱢑cation. Exodus 󱤏󱢑les of the mesh containing the communication nodes and
faces at processor boundaries will be written as nodes and side sets. This provides a way to visually check
the validity of the parallel communication maps.

6.5. WRITE S2G GEOMETRY FILE

Command: write_geom Write geometry associativity file

Input file command: write_geom
Command line options: -G

Command Description:

An s2g (Sculpt to Geometry) 󱤏󱢑le, with the pattern <󱤏󱢑leroot>.s2g, will be produced when this argument
is used where 󱤏󱢑leroot is the string speci󱤏󱢑ed by the –exodus_󱤏󱢑le or -e option. An s2g 󱤏󱢑le includes
geometry associativity for the exodus 󱤏󱢑le that is written. If used with Cubit’s "import s2g <󱤏󱢑leroot>" a
mesh-based geometry will be generated in Cubit with geometric entities prescribed by Sculpt through
the s2g 󱤏󱢑le.

When used with the –trimesh option, the s2g 󱤏󱢑le can provide information to Cubit to build a set of
mesh-based geometry volumes where only the surfaces are meshed. This is useful for using the tet
meshing capabilities in Cubit to mesh the discrete geometry that was generated in Sculpt. For example, a
tet mesh may be constructed frommicrostructures spn data (see import_spn) with the following
work󱤐󱤔ow:

1. Run Sculpt to generate an exodus and s2g 󱤏󱢑le. An example input 󱤏󱢑le may look like the following:

begin sculpt
import_spn = myfile.spn
trimesh = true
write_geom = true
pillow = 1

end sculpt

2. Import the 󱤏󱢑le into Cubit to generate a mesh based geometry:
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import s2g myfile

3. Delete the triangle mesh, set sizes and mesh:

delete mesh
vol all scheme tetmesh
vol all size 2.0
mesh vol all

Note that the write_geom and trimesh options are still in development and will currently only work
with a single processor (-j 1).

6.6. WRITE MESH BASED GEOMETRY

Command: write_mbg Write mesh based geometry file <beta>

Input file command: write_mbg
Command line options: -M

Command Description:

AnMBG (Mesh Based Geometry) 󱤏󱢑le will be produced when this argument is used with the pattern
<󱤏󱢑leroot>.mbg, where 󱤏󱢑leroot is the string speci󱤏󱢑ed by the –exodus_󱤏󱢑le or -e option. AnMBG 󱤏󱢑le
includes the surface and topology de󱤏󱢑nition de󱤏󱢑ned by sculpt as a result of the interface reconstruction
process. It will correspond to the boundary of the 3D elements that are generated in the exodus 󱤏󱢑le, or
the surface elements generated with the –trimesh option.

AnMBG 󱤏󱢑le can be be imported into Cubit using the following Cubit command line options:

import mbg "<fileroot>.mbg"

6.7. REPORT VFRAC TO MESH VOLUME
COMPARISON

Command: compare_volume Report vfrac and mesh volume comparison

Input file command: compare_volume
Command line options: -cv
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Command Description:

A report will be generated and printed to the terminal following the mesh summary that compares the
input volume fraction of the geometry with that of the 󱤏󱢑nal 󱤏󱢑nite element mesh. If a volume fraction
format is not used as input, the volume fractions will be computed on the re󱤏󱢑ned base grid and used as
comparison. Note that exact geometric volumes of the STL or analytic geometry are not used for
comparison, rather the volume fraction approximation of the geometry on the re󱤏󱢑ned Cartesian grid.

Figure 6-1. Example output from the compare_volume command.

The following is a brief description of each column:

• Block ID: ID of material/block

• Num Elems: Number of hex elements assigned to block in 󱤏󱢑nal mesh

• Sum VFrac: Sum of input volume fraction for block. For STL or diatom geometry,
approximates the volume fraction. For 3D image data (ie. bitmap, input_spn) sums the exact
volume fraction input.

• Elem Vol: Sum of 󱤏󱢑nal mesh volume for block

• Diff: Absolute dif󱤎erence between input and output volume fractions for block. (Elem Vol -
Sum VFrac)

• Percent Err: Percent error represented by Dif󱤎erence between input and output volume
fractions for block

• VFrac: Total volume fraction represented by Elem Vol. for block. VFrac volume should sum to
1.0.
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7. OVERLAY GRID SPECIFICATION

Sculpt options for setting up the overlay grid. Sculpt is an overlay-grid method that requires a base mesh
that it will modify to generate the 󱤏󱢑nal mesh. The base mesh can be in the form of a Cartesian grid, but
can also be any general unstructured hexahedral mesh de󱤏󱢑ned in an exodus 󱤏󱢑le (see the input_mesh
option). Pamgen can also be used to generate an unstructured base mesh (see
input_mesh_pamgen).

When an overlay Cartesian grid is used as the basis for the all-hex mesh that will be produced, the
bounds and size of the cells de󱤏󱢑ning the grid must be speci󱤏󱢑ed. The Cartesian grid can be de󱤏󱢑ned in one
of two ways:

1. De󱤏󱢑ne the bounding box and number of intervals in each coordinate direction. (xmin, ymin,
zmin, xmax, ymax, zmax, nelx, nely, nelz)

2. De󱤏󱢑ne a cell_size. Sculpt will then automatically de󱤏󱢑ne the Cartesian grid coordinates and
intervals by evaluating the bounding box of the input geometry and adding a small number of
cells in each coordinate direction.

Other options for setting up the Cartesian base grid include align and expandwhich are normally
used with the second method. The align option will automatically rotate the grid to best match the
characteristic direction of the geometry rather than maintaining alignment with the global Cartesian
directions. The expand option over-rides the default expansion of the Cartesian grid beyond the
bounding box of the geometry and allow the user to specify a speci󱤏󱢑c expansion percentage.

Overlay Grid Specification --overlay -ovr
--nelx -x <arg> Num cells in X in overlay Cartesian grid
--nely -y <arg> Num cells in Y in overlay Cartesian grid
--nelz -z <arg> Num cells in Z in overlay Cartesian grid
--xmin -t <arg> Min X coord of overlay Cartesian grid
--ymin -u <arg> Min Y coord of overlay Cartesian grid
--zmin -v <arg> Min Z coord of overlay Cartesian grid
--xmax -q <arg> Max X coord of overlay Cartesian grid
--ymax -r <arg> Max Y coord of overlay Cartesian grid
--zmax -s <arg> Max Z coord of overlay Cartesian grid
--cell_size -cs <arg> Cell size (nelx, nely, nelz ignored)
--align -a Automatically align geometry to grid
--bbox_expand -be <arg> Expand tight bbox by percent
--input_mesh -im <arg> Input Base Exodus mesh

63



--input_mesh_blocks -imb <arg> Block ids of Input Base Exodus mesh
--input_mesh_material -imm <arg> Material definition with input mesh
--input_mesh_pamgen -imp <arg> Input Base mesh defined by Pamgen

7.1. NUMBER OF INTERVALS X

Command: nelx Num cells in X in overlay Cartesian grid

Input file command: nelx <arg>
Command line options: -x <arg>
Argument Type: integer > 0

Command Description:

De󱤏󱢑nes the number of intervals in the x direction of the base Cartesian grid used for de󱤏󱢑ning the
volume fraction de󱤏󱢑nition and meshing For best results the intervals speci󱤏󱢑ed should result in
approximately equilateral cells.

See also nely, nelz

7.2. NUMBER OF INTERVALS Y

Command: nely Num cells in Y in overlay Cartesian grid

Input file command: nely <arg>
Command line options: -y <arg>
Argument Type: integer > 0

Command Description:

De󱤏󱢑nes the number of intervals in the y direction of the base Cartesian grid used for de󱤏󱢑ning the
volume fraction de󱤏󱢑nition and meshing For best results the intervals speci󱤏󱢑ed should result in
approximately equilateral cells.

See also nelx, nelz
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7.3. NUMBER OF INTERVALS Z

Command: nelz Num cells in Z in overlay Cartesian grid

Input file command: nelz <arg>
Command line options: -z <arg>
Argument Type: integer > 0

Command Description:

De󱤏󱢑nes the number of intervals in the z direction of the base Cartesian grid used for de󱤏󱢑ning the
volume fraction de󱤏󱢑nition and meshing For best results the intervals speci󱤏󱢑ed should result in
approximately equilateral cells.

See also nelx, nely

7.4. XMIN BOUNDING BOX RANGE

Command: xmin Min X coord of overlay Cartesian grid

Input file command: xmin <arg>
Command line options: -t <arg>
Argument Type: floating point value

Command Description:

De󱤏󱢑nes the minimum x coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also ymin, zmin, xmax, ymax, zmax.

7.5. YMIN BOUNDING BOX RANGE

Command: ymin Min Y coord of overlay Cartesian grid

Input file command: ymin <arg>
Command line options: -u <arg>
Argument Type: floating point value
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Command Description:

De󱤏󱢑nes the minimum y coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also xmin, zmin, xmax, ymax, zmax.

7.6. ZMIN BOUNDING BOX RANGE

Command: zmin Min Z coord of overlay Cartesian grid

Input file command: zmin <arg>
Command line options: -v <arg>
Argument Type: floating point value

Command Description:

De󱤏󱢑nes the minimum z coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also xmin, ymin, xmax, ymax, zmax.

7.7. XMAX BOUNDING BOX RANGE

Command: xmax Max X coord of overlay Cartesian grid

Input file command: xmax <arg>
Command line options: -q <arg>
Argument Type: floating point value

Command Description:

De󱤏󱢑nes the maximum x coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also xmin, ymin, zmin, ymax, zmax.
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7.8. YMAX BOUNDING BOX RANGE

Command: ymax Max Y coord of overlay Cartesian grid

Input file command: ymax <arg>
Command line options: -r <arg>
Argument Type: floating point value

Command Description:

De󱤏󱢑nes the maximum y coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also xmin, ymin, zmin, xmax, zmax.

7.9. ZMAX BOUNDING BOX RANGE

Command: zmax Max Z coord of overlay Cartesian grid

Input file command: zmax <arg>
Command line options: -s <arg>
Argument Type: floating point value

Command Description:

De󱤏󱢑nes the maximum z coordinate of the bounding box or range of the Cartesian mesh to be used for
meshing.

See also xmin, ymin, zmin, xmax, ymax.

7.10. CELL SIZE

Command: cell_size Cell size (nelx, nely, nelz ignored)

Input file command: cell_size <arg>
Command line options: -cs <arg>
Argument Type: floating point value
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Command Description:

De󱤏󱢑nes a target edge size for the cells of the base Cartesian grid. Both interval and cell_size can not be
speci󱤏󱢑ed simultaneously. If cell_size is used without a range speci󱤏󱢑cation, a bounding box of the
geometry will be computed and used as the default range

7.11. ALIGN

Command: align Automatically align geometry to grid

Input file command: align
Command line options: -a

Command Description:

The align option will attempt to orient the Cartesian grid with the main dimensions of the geometry.
This is done by de󱤏󱢑ning a tight bounding box around the geometry using an optimization procedure
where the objective is to minimize the dif󱤎erence in volume between an enclosing box and the geometry.
Using the align command will override any bounding box parameters previously entered and will build
an "aligned" bounding box around the full geometry. It is currently only implemented for STL
geometry and will ignore any other diatom de󱤏󱢑nitions. Note that this option will also write temporary
stl and diatom 󱤏󱢑les to the working directory.

7.12. BOUNDING BOX EXPANSION FACTOR

Command: bbox_expand Expand tight bbox by percent

Input file command: bbox_expand <arg>
Command line options: -be <arg>
Argument Type: floating point value

Command Description:

Sculpt will measure a tight bounding box of the input model and expand the box by the speci󱤏󱢑ed
percentage in x, y and z. Input value can be any positive or negative 󱤐󱤔oating point value where 1.0
represents 100 percent expansion. If not speci󱤏󱢑ed, the default will add about 2.5 cell widths to the
bounding box on each side. This option should be used with the cell_size option. It will be ignored if a
speci󱤏󱢑c bounding box has been de󱤏󱢑ned (ie. xmin, ymin, etc...).
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7.13. INPUT BASE EXODUS MESH

Command: input_mesh Input Base Exodus mesh

Input file command: input_mesh <arg>
Command line options: -im <arg>
Argument Type: file name with path

Command Description:

Option to import an Exodus 󱤏󱢑le to use as the base mesh for Sculpt. Sculpt’s meshing procedure requires
a base mesh from which geometry is recovered and captured. The default base mesh is a Cartesian grid
that is de󱤏󱢑ned by specifying a bounding box and intervals. The input_mesh option permits a general
hexahedral mesh to be used as the base mesh instead of a Cartesian grid. This option currently supports
a serial and parallel Exodus 󱤏󱢑les containing HEX8 elements with any number of blocks.

Figure 7-1. An exodus file is used as the base mesh for Sculpt
and STL files describe the geometry to be sculpted.

The input_mesh option can also be used in parallel. Sculpt currently requires the mesh to be
decomposed prior to running sculpt. The SEACAS decomp tool can be used to pre-process any exodus
mesh to break it into multiple meshes ready for use in sculpt. SEACAS is an open source library
available on github. For example, when using four processors with sculpt, you would use the following
command:

decomp -p 4 simple-mesh.g

The result would be the four meshes:
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simple-mesh.g.4.0
simple-mesh.g.4.1
simple-mesh.g.4.2
simple-mesh.g.4.3

Once the base mesh has been decomposed, Sculpt can be run. In this case, the input_mesh option
would use the root simple-mesh.g as the argument.

input_mesh = simple-mesh.g

If the -j 4 option is used, sculpt will look for 4 meshes in the current working directory with the
appropriate root and extension.

Four dif󱤎erent options are supported for describing the geometry when using the input_mesh
option:

• stl_file: A single 󱤏󱢑le containing a water-tight faceted description of the geometry. Note that
only the portion of the STL 󱤏󱢑le completely contained within the base mesh will be represented in
the 󱤏󱢑nal mesh.

• diatom_file:May contain analytic descriptions of geometric primitives and/or references to
multiple STL 󱤏󱢑les.

• input_spn: The materials of the cells in the spn 󱤏󱢑le are mapped onto the elements of the input
mesh using inverse distance-weighted interpolation. As with the stl and diatom 󱤏󱢑les, only the
portion of the spn 󱤏󱢑le completely contained within the base mesh will be represented in the 󱤏󱢑nal
mesh. The input_mesh_blocks option can be used in conjunction with the spn_󱤏󱢑le option to
limit the scope of the mapping of material from the spn 󱤏󱢑le to the mesh 󱤏󱢑le. If this options is
used, only elements in the speci󱤏󱢑ed blocks will get mapped to. For more details, see the
input_mesh_blocks option.

• Element Variables: The geometry may also be described by element variables in the Exodus
󱤏󱢑le. Element variables should represent material volume fractions where the sum of element
variables for any one cell should be between 0.0 and 1.0. Any number of element variables may be
used where each unique variable de󱤏󱢑ned will describe an element block in the 󱤏󱢑nal Exodus mesh
produced. if the sum of element variables is less than 1.0 for any one element, a void material will
be assumed and removed from the base mesh unless the mesh_void option is used.

Limitations:

• An STL 󱤏󱢑le and element variables cannot be used in the same input. If element variables are
present in the Exodus 󱤏󱢑le and an STL or Diatom 󱤏󱢑le is used, the element variables will be ignored.

• If an input mesh is used, any Cartesian grid speci󱤏󱢑cations will be ignored (ie. nelx, xmin, xmax).

• The adapt_type option will work only for an exodus input mesh that de󱤏󱢑nes a mapped mesh.
Adapt types vfrac_average (4) and vfrac_difference (6) are currently the only
criteria supported with the input_mesh option.
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7.14. BLOCKS OF INPUT BASE EXODUS MESH

Command: input_mesh_blocks Block ids of Input Base Exodus mesh

Input file command: input_mesh_blocks <arg>
Command line options: -imb <arg>
Argument Type: integers > 0

Command Description:

This option is valid when specifying both input_mesh and spn_file. Using this option, the
materials of the cells in the spn 󱤏󱢑le are mapped onto only the elements of the speci󱤏󱢑ed blocks in the
input_mesh 󱤏󱢑le. The remaining blocks are treated as void. The behavior without this option maps the
materials of the cells in the spn 󱤏󱢑le onto elements of all blocks in the input_mesh 󱤏󱢑le.

7.15. MATERIAL DEFINITION WITH INPUT MESH

Command: input_mesh_material Material definition with input mesh

Input file command: input_mesh_material <arg>
Command line options: -imm <arg>
Argument Type: integers > 0
Input arguments: geometry (0)

blocks (1)

Command Description:

This option is valid when specifying an ’input_mesh’ . Using this option, the material de󱤏󱢑nition in the
󱤏󱢑nal mesh may be de󱤏󱢑ned based on the material de󱤏󱢑nitions on the geometry, or based on the block ids
of the input mesh. For example, a diatom 󱤏󱢑le de󱤏󱢑ning geometry would have materials de󱤏󱢑ned which are
used to de󱤏󱢑ne the materials in the 󱤏󱢑nal mesh. The default is to use material de󱤏󱢑nitions on the geometry.
Possible options are:

• geometry (0):Material de󱤏󱢑ned by geometry

• blocks (1):Material de󱤏󱢑ned by blocks in input mesh

Behavior of interior faces dif󱤎ers when using the blocks option. For instance, interior faces are de󱤏󱢑ned
by block interfaces rather than STL or diatom geometry. Exterior faces, on the other hand, are still
de󱤏󱢑ned by STL or diatom geometry. When combined with the capture option, only exterior faces are
captured.
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7.16. INPUT BASE MESH DEFINED BY PAMGEN

Command: input_mesh_pamgen Input Base mesh defined by Pamgen

Input file command: input_mesh_pamgen <arg>
Command line options: -imp <arg>
Argument Type: file name with path

Command Description:

Option to use Pamgen to create a base mesh for Sculpt. Pamgen is an open source meshing tool
developed at Sandia for generating hexahedral meshes from geometric primitives. In addition to being a
stand-alone meshing solution, it is a parallel tool that is integrated as an inline meshing tool for Sandia’s
shock physics simulation tool, Alegra. Pamgen has also been integrated in Sculpt as a solution for
automatically de󱤏󱢑ning a base mesh.

The input_mesh_pamgen option permits a mesh de󱤏󱢑ned my Pamgen input parameters to de󱤏󱢑ne the
base mesh. A limited set of brick and cylinder primitives are supported by Pamgen. The name of an ascii
󱤏󱢑le containing the pamgen mesh de󱤏󱢑nition is used as the argument for this option. The following is a
simple example of a pamgen mesh description. It generates a partial cylinder with a span of 90 degrees
and height of 1.0. Other parameters allow for speci󱤏󱢑c interval and sizing speci󱤏󱢑cations as well as
block/material identi󱤏󱢑cation.

mesh
radial trisection

trisection blocks, 2
zmin -0.00075
numz 1

zblock 1 1. interval 8
numr 3

rblock 1 2.0 interval 8
rblock 2 3.0 interval 8
rblock 3 4.0 interval 8

numa 1
ablock 1 90. interval 24

end
set assign

nodeset, ilo, 100
block sideset, ihi, 45, 2

end
end

For a full description of Pamgen and input parameters see the following document:

David M. Hensinger, Richard R. Drake, James G. Foucar, Thomas A. Gardiner, "Pamgen, a Library for
Parallel Generation of Simple Finite Element Meshes", Sandia Report SAND2008-1933 (2008)
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Figure 7-2. Base mesh generated by pamgen using the above in-
put parameters. Colors represent 4 different processors when
used in parallel mode.

Similar to the input_mesh option, the same geometry input options are available. They include
stl_file, diatom_file and input_spn. See the input_mesh option for additional details and
limitations.
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8. MESH TYPE

Sculpt options for specifying the type of mesh that will be generated. The default mesh type that will be
produced from Sculpt is an unstructured all-hex mesh that will attempt to conform as closely as possible
to the input geometry. Sculpt will normally generate its mesh on the interior of the input geometry,
however with the mesh_void option, it can also generate the mesh on the exterior of the geometry, out
to the extent of the user-de󱤏󱢑ned Cartesian overlay grid.

In addition to the default hex mesh, other types of meshes may be produced. This includes the stair-step
mesh where the cells of the Cartesian grid inside or intersecting the geometry are used directly as the
mesh without projections or smoothing. A triangle mesh may also be generated, which can be used as
the basis for a facet-based geometry representation. Other methods include the capabilities to generate a
hex-dominant mesh with hexes and tets as well as the ability to include degenerate elements.

Mesh Type --type -typ
--stair -str <arg> Generate Stair-step mesh
--mesh_void -V <arg> Mesh void
--htet -ht <arg> Convert hexes below quality threshold to tets
--trimesh -tri Generate tri mesh of geometry surfaces
--tetmesh -tet <arg> Under Development
--deg_threshold -dg <arg> Convert hexes below threshold to degenerates
--max_deg_iters -dgi <arg> Maximum number of degenerate iterations
--htet_material -htm <arg> Convert hexes in given materials to tets
--htet_transition -htt <arg> Transition method between hexes and tets
--htet_pyramid -htp <arg> Local transition pyramid
--htet_tied_contact -htc <arg> Local transition tied contact
--htet_no_interface -htn <arg> Local transition none

8.1. STAIR

Command: stair Generate Stair-step mesh

Input file command: stair <arg>
Command line options: -str <arg>
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Argument Type: integer (0, 1, 2, 3)
Input arguments: none (0)

off (0)
on (1)
full (1)
interior (2)
fast (3)

Command Description:

Figure 8-1. Example stair-step mesh on STL geometry.

The stair option generates a stair-step mesh where the cells of the Cartesian grid are used in the 󱤏󱢑nal
mesh without projection or smoothing to the material interfaces. Cells selected from the Cartesian grid
to be used in the 󱤏󱢑nal mesh will have volume fraction greater than 0.5. Several dif󱤎erent options for the
stair argument are available:

off (0): Stair option is of󱤎 (default)

full (1): Stair-step mesh is generated, but additional processing is done to ensure material interfaces
are manifold. This option may add or subtract cells from the basic mesh (where volume fraction > 0.5)
to ensure no non-manifold connections between nodes and edges exist in the 󱤏󱢑nal mesh.

interior (2): The exterior boundary will be smooth while internal material interfaces will be
stair-step. This option also ensures manifold connections between elements.

fast (3): Generates the 󱤏󱢑nal mesh based only on volume fraction criteria. No additional processing
is done to ensure manifold connections between edges and nodes.
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8.2. MESH VOID

Command: mesh_void Mesh void

Input file command: mesh_void <arg>
Command line options: -V <arg>
Argument Type: true/false or only
Input arguments: off (0)

false (0)
on (1)
true (1)
only (2)

Command Description:

Figure 8-2. Mesh is generated in the void region surrounding the STL geometry.

The mesh_void accepts the following parameters:

off (0): Nomesh is generated in the void region

on (1):Mesh is generated in the void region

only (2):Mesh is generated only in the void region and not in the material
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If mesh_void option is set to on or only, then the void space surrounding the geometry will be treated as
a separate material. Elements will be generated in the void to the extent of the Cartesian grid
boundaries. If void_mat option is not used, the material ID of elements in the void region will be the
maximummaterial ID in the model + 1.

8.3. HTET

Command: htet Convert hexes below quality threshold to tets

Input file command: htet <arg>
Command line options: -ht <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Figure 8-3. Tet elements generated where quality drops below threshold.

Automatically generate tets in place of poor quality elements. This option can be used to eliminate poor
quality hex elements by replacing each hex that falls below the user de󱤏󱢑ned Scaled Jacobian with 24 tets.
The 24 tets are formed by inserting one node at the center of each face and one on the interior. Default
value for htet is -1.0.

If an neighboring element is a hex, and will not be split, one may choose whether to use pyramid
transitions or have hanging nodes. The default is to have hanging nodes with a tied contact condition
being created. The transition type may be speci󱤏󱢑ed with the htet_transition command.

If tet blocks are created, their ids will be the material id plus an of󱤎set based on the maximummaterial
id. Likewise, any pyramid blocks created will be of󱤎set as well, with their ids coming after hex block ids if
there are no tets, or with their ids coming after tet blocks.
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8.4. TRIMESH

Command: trimesh Generate tri mesh of geometry surfaces

Input file command: trimesh
Command line options: -tri

Command Description:

Figure 8-4. Trimesh generated from voxel microstructure data.

Generate a triangle mesh of the surface geometry. Surface geometry will be de󱤏󱢑ned based on input grid
resolution as well as user de󱤏󱢑ned smoothing smoothing parameters. Resulting exodus mesh will contain
only TRI elements. All TRI elements will be assigned to the same block in the exodus 󱤏󱢑le.

This option is most often used in conjunction with the –write_geom option used to build a mesh-based
geometry in Cubit. Use the following command in Cubit to import a Sculpt trimesh exodus 󱤏󱢑le and s2g
󱤏󱢑le (produced from –write_geom)

import s2g <root filename>

See write_geom for more information on s2g 󱤏󱢑les.

8.5. TETMESH

Command: tetmesh Under Development

Input file command: tetmesh <arg>
Command line options: -tet <arg>
Argument Type: none
Input arguments: off (0)

on (1)
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true (1)
meshgems (2)

Command Description:

Under Development - uses space-󱤏󱢑lling tets as base grid. Size and extent is de󱤏󱢑ned by bounding box
options.

The meshgems (2) option uses a third party tet mesher to place interior tets. Triangle mesh is de󱤏󱢑ned
by splitting quads on surface. Both tetmesh options are currently only implemented for serial
execution.

8.6. DEGENERATE (EDGE COLLAPSE)
THRESHOLD

Command: deg_threshold Convert hexes below threshold to degenerates

Input file command: deg_threshold <arg>
Command line options: -dg <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:
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Figure 8-5. Examples of degenerates hexes where select edges have been collpased.

Some geometries will not permit a usable mesh with a traditional all-hex mesh. Sculpt includes the
option to automatically and selectively collapse element edges to improve low-quality elements. The
max_deg_iters and the deg_threshold values are used to control the creation of degenerates. Degenerate
elements are treated as standard hex elements, but use repeated nodes in the eight-node connectivity
array.

The deg_threshold value indicates scaled Jacobian threshold for edge collapses. Nodes at hexes below
this threshold will be candidates for edge collapses, provided doing so will improve the minimum scaled
Jacobian at the neighboring hexes. Default is -1.0.

8.7. MAXMIMUM DEGENERATE ITERATIONS

Command: max_deg_iters Maximum number of degenerate iterations

Input file command: max_deg_iters <arg>
Command line options: -dgi <arg>
Argument Type: integer >= 0

Command Description:

Maximum number of edge collapse iterations to perform to create degenerate hex elements. Default is
0. See also deg_threshold

8.8. HTET MATERIAL

Command: htet_material Convert hexes in given materials to tets

Input file command: htet_material <arg>
Command line options: -htm <arg>
Argument Type: integer >= 0

Command Description:

Generate tets in place hexes in a given material. This option can be given multiple times to specify
multiple materials. Each hex in a material is replaced with 24 tets. The 24 tets are formed by inserting
one node at the center of each face and one on the interior.

If an neighboring element is a hex, and will not be split, one may choose whether to use pyramid
transitions or have hanging nodes. The default is to have hanging nodes with a tied contact condition
being created. The transition type may be speci󱤏󱢑ed with the htet_transition command.
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If tet blocks are created, their ids will be the material id plus an of󱤎set based on the maximummaterial
id. Likewise, any pyramid blocks created will be of󱤎set as well, with their ids coming after hex block ids if
there are no tets, or with their ids coming after tet blocks.

htet_material = 10
htet_material = 12
htet_transition = pyramid
htet_no_interface = 10 13

Figure 8-6. Simple example of the use of hybrid tet-hex capability
using the above example input. Materials 10 and 12 use tet
elements while 13 remains hexes. The default transition is to use
pyramids, while the specific interface between 10 and 13 has no
interface.

8.9. HTET TRANSITION

Command: htet_transition Transition method between hexes and tets

Input file command: htet_transition <arg>
Command line options: -htt <arg>
Argument Type: none/pyramid/tied_contact
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Input arguments: none (0)
pyramid (1)
tied_contact (2)

Command Description:

When generating tets adjacent to hexes, the transition type between the two elements can be de󱤏󱢑ned.
Possible options are:

• none (0): No transition between hex and tet

• pyramid (1): Pyramid transition between hex and tet

• tied_contact (2): Tied contact condition between hex and tet

If pyramid transition is speci󱤏󱢑ed, the hex may be split into 1 pyramids and 20 tets, 2 pyramids and 16
tets, 3 pyramids and 12 tets, and so forth. The mesh will remain conformal if pyramid transition is
speci󱤏󱢑ed.

A tied contact condition can be de󱤏󱢑ned to ensure continuity of the neighboring tets and hexes. To
facilitate this, one additional nodeset and sideset will be generated and output to the exodus 󱤏󱢑le if the
gen_sidesets = variable (2) option is speci󱤏󱢑ed. The sideset and nodeset will be identi󱤏󱢑ed with the
following IDs:

Sideset 10000 = the set of hex faces that interface a set of 4 tets.

Nodeset 1000 = the set of nodes at the interface between hexes and tets. One node per face in Sideset
10000 will be included.

8.10. LOCAL HTET TRANSITION PYRAMID

Command: htet_pyramid Local transition pyramid

Input file command: htet_pyramid <arg>
Command line options: -htp <arg>
Argument Type: integer(s) >= 0

Command Description:

When generating tets adjacent to hexes, pyramid transitions can be speci󱤏󱢑ed for a given material or
material interface. To specify a material interface, two material ids are given to specify pyramid
transition between the two materials. To specify multiple materials or multiple material interfaces, this
command may be used multiple times.

82



8.11. LOCAL HTET TRANSITION TIED CONTACT

Command: htet_tied_contact Local transition tied contact

Input file command: htet_tied_contact <arg>
Command line options: -htc <arg>
Argument Type: integer(s) >= 0

Command Description:

When generating tets adjacent to hexes, tied contact transitions can be speci󱤏󱢑ed for a given material or
material interface. To specify a material interface, two material ids are given to specify tied contact
transition between the two materials. To specify multiple materials or multiple material interfaces, this
command may be used multiple times.

8.12. LOCAL HTET TRANSITION NONE

Command: htet_no_interface Local transition none

Input file command: htet_no_interface <arg>
Command line options: -htn <arg>
Argument Type: integer(s) >= 0

Command Description:

When generating tets adjacent to hexes, no transition can be speci󱤏󱢑ed for a given material or material
interface. To specify a material interface, two material ids are given to specify no transition between the
two materials. To specify multiple materials or multiple material interfaces, this command may be used
multiple times.
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9. BOUNDARY CONDITIONS

Sculpt options for specifying the methods for generating nodesets, sidesets and blocks on the mesh.
Several automatic methods for generating nodesets and sidesets are provided in Sculpt using the
gen_sidesets option. Where multiple blocks are required, Block IDs are normally de󱤏󱢑ned using the
material ID in the diatom 󱤏󱢑le. Each STL 󱤏󱢑le can be associated with a dif󱤎erent block ID. If the
mesh_void option is used, the ID for the block of elements in the void region can be set using the
void_mat option.

For other input formats such as volume fraction microstructure data or Cartesian Exodus 󱤏󱢑les, the Block
IDs are de󱤏󱢑ned by the individual formats.

Boundary Conditions --boundary_condition -bc
--void_mat -VM <arg> Void material ID (when mesh_void=true)
--gen_sidesets -SS <arg> Generate sidesets
--free_surface_sideset -FS <arg> Free Surface Sideset
--match_sidesets -mss <arg> Sidesets ids of matching pairs

9.1. VOID MATERIAL ID

Command: void_mat Void material ID (when mesh_void=true)

Input file command: void_mat <arg>
Command line options: -VM <arg>
Argument Type: integer > 0

Command Description:

When the mesh_void option is used, this value is the material (block) ID assigned to all elements in the
void region. If void_mat option is not used, the material ID of elements in the void region will be the
maximummaterial ID in the model + 1. Note that the void_mat may be the same as an existing material
in another part of the model.
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9.2. GENERATE SIDESETS

Command: gen_sidesets Generate sidesets

Input file command: gen_sidesets <arg>
Command line options: -SS <arg>
Argument Type: integer (0, 1, 2, 3, 4, 5)
Input arguments: off (0)

fixed (1)
variable (2)
geometric_surfaces (3)
geometric_sidesets (4)
rve (5)
input_mesh_and_stl (6)
input_mesh_and_free_surfaces (7)
rve_variable (8)

Command Description:

Figure 9-1. Geometry used in sideset examples below.

Generate exodus sidesets using one of the following options:

off (0): No sidesets will be generated

fixed (1): Exactly 3 sidesets will be generated according to the following:

• Sideset 1: All sides at the domain boundary. Sides will only be present in this sideset if the model
intersects the enclosing bounding box or the void option is used.

• Sideset 2: All sides at the model boundary. Any side on the model that is not interior will be
included. This should represent a full enclosure of the model if it does not intersect the domain
boundary.

• Sideset 3: All sides at material interfaces. Includes sides on the interior where adjacent blocks are
dif󱤎erent.
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Figure 9-2. Example of fixed(1) sidesets.

variable (2): A variable number of sidesets will be generated with the following characteristics:

• Surfaces at the domain boundary

• Exterior material surfaces

• Interfaces between materials

Unlike Fixed sidesets, grouping of sides will be contiguous. A separate sideset will be generated for each
set of contiguous sides.
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Figure 9-3. Example of variable(2) sidesets.

geometric_surfaces (3): Sidesets will be generated according to imported surface ID
information. STL 󱤏󱢑les may include an optional surface designation for any or all triangles in the 󱤏󱢑le.
Surface information may be written automatically from Cubit based on geometric surface IDs or sideset
IDs. See the cubit sculpt parallel sideset option for more details. If present, one sideset will be generted
for each surface designation in the STL 󱤏󱢑le. Following is an example surface designation in an STL 󱤏󱢑le.
It would appear following all triangles.

surface 1
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23

endsurface 1

The id following the surface designation will be used as the sideset ID. Up to 10 triangle IDs, per line
may be assigned to the surface. Triangle IDs are assigned based on order they appear in the STL 󱤏󱢑le.
Any number of surfaces may be de󱤏󱢑ned. For this option, the assumption is that all triangles included in
the STL 󱤏󱢑les will be included in at least one surface designation.
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Figure 9-4. Example of all geometric surfaces (3) defining sidesets.

geometric_sidesets (4): Similar to geometric_surfaces, except that only a portion of the
triangles may be designated as sideset surfaces. This option is useful when using Cubit to identify
speci󱤏󱢑c surfaces as sidesets.
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Figure 9-5. Example of selected geometric sidesets (4) in Cubit
defining sidesets in Sculpt.

RVE (5):When using the full bounding box, such as representative volume elements (RVE) for
microstructures, the nodesets and sidesets with IDs 1 to 6 are reserved for the six faces of the bounding
box. They are assigned as follows:

Nodeset/Sideset ID Contains nodes/faces
1 on minimum X domain boundary
2 on maximum X domain boundary
3 on minimum Y domain boundary
4 on maximum Y domain boundary
5 on minimum Z domain boundary
6 on maximum Z domain boundary

In addition, a nodeset and sideset will be generated on interior surfaces for each unique pair of adjacent
material IDs. One 󱤏󱢑nal nodeset will also be generated along interior curves at all internal triple junctions
(curves where at least 3 surfaces share a common curve).
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Figure 9-6. Example of automatically defined sidesets at domain
boundaries of an RVE and at all interface surfaces between
materials.

input_mesh_and_stl (6): Used with the input_mesh option where an exodus 󱤏󱢑le is used as the
base grid. Sidesets and nodesets de󱤏󱢑ned in the input exodus mesh are transferred to the output mesh if
the surface is not an interior surface. Sidesets de󱤏󱢑ned in the augmented STL input 󱤏󱢑le are transferred to
the output mesh for interior surfaces. See also the free_surface_sideset option for prescribing a
sideset on interior surfaces cut by the STL de󱤏󱢑nition when using the input_mesh option.
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Figure 9-7. Example of sidesets defined in the input mesh and
corresponding domain boundary sidesets in the output mesh.

input_mesh_and_free_surfaces (7): Used with the input_mesh option where an exodus 󱤏󱢑le
is used as the base grid. Sidesets and nodesets de󱤏󱢑ned in the input exodus mesh are transferred to the
output mesh if the surface is not an interior surface. Sidesets de󱤏󱢑ned in the free_surface_sideset
option are used to de󱤏󱢑ne sidesets for interior surfaces.
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Figure 9-8. Example of sidesets defined in the input mesh and
corresponding domain boundary sidesets in the output mesh.

rve_variable (8): Nodesets 1-6 and Sidesets 1-6 are de󱤏󱢑ned at the boundaries as described in the
gen_sidesets = rve (5) option. With the rve_variable option, additional nodesets and
sidesets at material interfaces on the interior of the mesh are de󱤏󱢑ned similar to the gen_sidesets =
variable (2) option. Grouping of interior sides in a sidesets will be contiguous, where a separate
sideset will be generated for each unique set of contiguous sides. Nodesets will be generated in a similar
manner.

9.3. FREE SURFACE SIDESETS

Command: free_surface_sideset Free Surface Sideset

Input file command: free_surface_sideset <arg>
Command line options: -FS <arg>
Argument Type: integer(s) >= 0

Command Description:
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Given exodus sidesets are treated as interior surfaces for STL projection.

Used with the input_mesh option when using an exodus mesh as the base grid. This may be useful if
the capture option is enabled and some of the STL surfaces are close in proximity to the boundaries of
the input exodus mesh. When close in proximity, sculpt will by default not project those boundary
nodes to the STL surface but keep them on the domain boundary. If a list of sideset IDs are given here,
the sideset faces will be projected to the STL. The sideset IDs should refer to sidesets that are de󱤏󱢑ned in
the speci󱤏󱢑ed input_mesh exodus 󱤏󱢑le.

Figure 9-9. Example of free_surface_sideset defined on the top
surface faces of an input mesh

9.4. MATCH SIDESET IDS

Command: match_sidesets Sidesets ids of matching pairs

Input file command: match_sidesets <arg>
Command line options: -mss <arg>
Argument Type: integer(s) >= 0

Command Description:

If used with an unstructured base grid (input mesh), this option allows the user to de󱤏󱢑ne a crack in the
input mesh, where the faces of each vertical side (wall) of the crack are each in a dif󱤎erent sideset. The
faces at the bottom of the crack share a common edge (V-bottom) or face (square-bottom). Sculpt will
match or equalize the volume fractions of the bottom cells on either side of the crack. This produces a
uniform, higher quality mesh at the crack. The sidesets must be speci󱤏󱢑ed in a pairwise order. This
option must be used with the –input_mesh (-im) option.
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10. ADAPTIVE MESHING

Sculpt options for specifying adaptive meshing. Sculpt uses an initial overlay Cartesian grid that serves
as the basis for the all-hex mesh. The default mesh size will roughly follow the constant size cells of the
overlay grid. The adaptivity option allows the user to automatically split cells of the Cartesian grid based
on geometric criteria, resulting in smaller cells in regions with 󱤏󱢑ner details. The adapted grid is then
used as the basis for the Sculpt procedure.

Figure 10-1. Adaptive mesh begins with constant size coarse
Cartesian grid. Cells are recursively split based on geometry
criteria and transitions added between levels. Projections and
smoothing are performed to improve element quality.

Three options are used for controlling the adaptivity in sculpt: adapt_type, adapt_levels and
adapt_threshold. The adapt_type option controls the method and geometric criteria used for deciding
which cells to split in the grid, while the adapt_levels option controls the the maximum number of
times any one cell can be split. Depending upon the adapt_type selected, the adapt_threshold is used as
the speci󱤏󱢑c geometric threshold value at which the decision is made to split any given cell.

94



Figure 10-2. Initial cut-away view of adapted grid from dragon
model before performing Sculpt operations.

Figure 10-3. The final mesh of the dragon model and cutaway
view of the mesh is shown with up to 4 levels of adaptive
refinement.

Adaptive Meshing --adapt -adp
--adapt_type -A <arg> Adaptive meshing type
--adapt_threshold -AT <arg> Threshold for adaptive meshing
--adapt_levels -AL <arg> Number of levels of adaptive refinement
--adapt_export -AE Export exodus mesh of refined grid
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10.1. ADAPTIVE REFINEMENT TYPE

Command: adapt_type Adaptive meshing type

Input file command: adapt_type <arg>
Command line options: -A <arg>
Argument Type: integer (0, 1, 2, 3, 4, 5)
Input arguments: off (0)

facet_to_surface (1)
surface_to_facet (2)
surface_to_surface (3)
vfrac_average (4)
coarsen (5)
vfrac_diff (6)
vfrac_difference (6)

Command Description:

This option will automatically re󱤏󱢑ne the mesh according to a user-de󱤏󱢑ned criteria. Without this option,
a constant cell size will be assumed everywhere in the model. To build the mesh, Sculpt uses an
approximation to the exact geometry of the CADmodel by interpolating mesh surfaces from volume
fraction samples in each cell of the Cartesian grid. In general, the, higher the resolution of the Cartesian
grid, the more sampling is done and the more accurate the mesh will represent the initial geometry. The
adapt_type selected will control the criteria used for re󱤏󱢑ning the mesh. If the criteria is not satis󱤏󱢑ed, the
re󱤏󱢑nement will continue until a threshold indicated by the adapt_threshold parameter is satis󱤏󱢑ed
everywhere, or the maximum number of levels (adapt_levels) is reached. The following criteria for
re󱤏󱢑nement are available:

• off (0): Cartesian grid is de󱤏󱢑ned only by nelx, nely, and nelz or cell_sizewhich is used
as the basis for the sculpt mesh.

No re󱤏󱢑nement will be performed.

• facet_to_surface (1): This option will evaluate every location where an edge in the
Cartesian grid intersects a triangle of the STLmodel and measures the closest distance to the
approximated geometry. The cells adjacent to intersecting edges where the measured distance is
greater than the adapt_thresholdwill be identi󱤏󱢑ed for uniform re󱤏󱢑nement. This is done for
each re󱤏󱢑nement level where a new approximated geometry is then computed based upon the
󱤏󱢑ner resolution grid. The re󱤏󱢑nement will continue until all measured distances are less than the
adapt_threshold, or the maximum number of levels (adapt_levels) is reached. This option
can only be used if input comes from an STL 󱤏󱢑le. Microstructures and diatoms are currently not
supported.
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Figure 10-4. Distance from STL Facet to Approximated Geom-
etry. The distance d is measured between the facets (green)
where they cross the edges of the grid, to the closest point on
the interpolated geometry. If d > adapt_threshold then the cell
is split.

surface_to_facet (2): This criteria is similar to facet_to_surface (1) except that the
locations selected for sampling are chosen from the vertices representing the approximated
surfaces. The closest distance measured to any of the facets in the STLmodel is used as the criteria
for re󱤏󱢑nement. Those cells at vertices where the distance measured exceeds the
adapt_threshold are identi󱤏󱢑ed for re󱤏󱢑nement. This option is generally faster than 1, but may
miss features if the initial resolution of the grid is too coarse. This option can also only be used if
input geometry comes from an STL 󱤏󱢑le. Microstructures and diatoms are currently not
supported.

Figure 10-5. Distance from Approximated Geometry to STL
Facet. The distance d is measured between points on the interpo-
lated geometry corresponding to a projected point on the grid, to
its closest point on one of the STL facets. If d > adapt_threshold
then the cell is split.

surface_to_surface (3): This criteria will test each cell to compute the local interpolated
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surface for the cell and compare with the surface interpolated for its eight subdivided child cells.
If the distance between these two approximated surfaces is greater the the user de󱤏󱢑ned
adapt_threshold, then the cell will be uniformly re󱤏󱢑ned. This option can be used with STL
and diatom input geometry, but not withMicrostructures.

Figure 10-6. Distance Between Child and Parent Approximated
Geometry. After computing the interpolated geometry for level
n and level n+1, d is the distance between the two geometry
representations. Cells where d > adapt_threshold are split.

vfrac_average (4): Each cell of the Cartesian grid is tested to determine if it should be
subdivided into eight cells. The volume fraction of the parent cell is compared with the average
volume fraction of its eight child cells. If the absolute dif󱤎erence between the average child
volume fraction and its parent volume fraction is greater than the user de󱤏󱢑ned
adapt_threshold then the cell is uniformly re󱤏󱢑ned. The adapt_threshold for this case
should be a number between 0 and 1. A smaller number will be more sensitive to changes in
geometry, usually resulting in more re󱤏󱢑nement at interfaces.

Figure 10-7. Difference of Cell Volume Fraction. Volume frac-
tions are evaluated for the 8 child cells of a cell at level n. This
example shows where one or more of the volume fractions at
level n+1 of the lower left cells does not differ by more than a
threshold d, so it remains unsplit.

coarsen (5): Given a dense set of data on a Cartesian Grid, Sculpt will begin at a coarse
resolution and re󱤏󱢑ne to capture changes in the data. It uses the adapt_levels option to determine
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the coarseness of the initial grid. For example, a dense grid of LxMxN cells will begin with an
initial resolution of L/2â x M/2â x N/2â, where a is the user de󱤏󱢑ned adapt_levels value. Cells will
be identi󱤏󱢑ed for re󱤏󱢑nement if the volume fraction of any material in a cell is greater than the user
de󱤏󱢑ned adapt_threshold and less than 1.0-adapt_threshold. This option is available only for
input_spn and input_micro formats. It is most useful for cases where very dense data is
initially provided which would be too 󱤏󱢑ne to serve as an FEAmesh. This method will ef󱤎ectively
coarsen the mesh on the interior and exterior of solids, but maintain a 󱤏󱢑ne resolution at geometry
boundaries.

Figure 10-8. Refine to Dense Data (Coarsening). Initial grid
at resolution N X M is coarsened to N0 X M0 based on the
adapt_levels value. Coarse cells are then split similar to criteria
in adapt_type = 4.

vfrac_difference (6): Each cell of the Cartesian grid is tested to determine if it should be
subdivided into eight cells. The volume fraction of the parent cell is compared with each of the
volume fractions of its eight child cells. If the absolute dif󱤎erence between any of the child volume
fractions and its parent volume fraction is greater than the user de󱤏󱢑ned adapt_threshold then
the cell is uniformly re󱤏󱢑ned. The adapt_threshold for this case should be a number between 0
and 1. A smaller number will be more sensitive to changes in geometry, usually resulting in more
re󱤏󱢑nement at interfaces.

To maintain a conforming mesh, transition elements will be inserted to transition between smaller and
larger element sizes. Default for the adapt_type option is off (0) (or that no adaptive re󱤏󱢑nement
will take place).

In all cases the initial Cartesian grid de󱤏󱢑ned by xint, yint and zint or the cell_size value will be used
as the basis for re󱤏󱢑nement and will de󱤏󱢑ne the approximate largest element size in the mesh.

10.2. ADAPTIVE REFINEMENT THRESHOLD

Command: adapt_threshold Threshold for adaptive meshing

Input file command: adapt_threshold <arg>
Command line options: -AT <arg>
Argument Type: floating point value >= 0.0
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Command Description:

This value controls the sensitivity of of the adaptivity. The value used should be based upon the
adapt_type:

• facet_to_surface (1)

• surface_to_facet (2)

• surface_to_surface (3)

For these options, the adapt_type selected represents an absolute distance between surfaces or
facets. Where the distance exceeds adapt_threshold the nearby cell or cells will be identi󱤏󱢑ed
for re󱤏󱢑nement. The smaller this number the more sensitive will be the adaptation and greater the
resulting number of elements. If not speci󱤏󱢑ed, the adapt_thresholdwill be determined as
follows:

adapt_threshold = 0.25 * cell_size / adapt_levels\^2

• vfrac_average (4)

• coarsen (5)

The adapt_threshold value in this case represents the maximum dif󱤎erence in volume fraction
between a parent cell and the average of its eight child cells. This value should be between 0.0 and
1.0. The smaller the number, the more sensitive will be the adaptation and the greater the
number of resulting elements. A default adapt_threshold of 0.01 is used if not speci󱤏󱢑ed.

Note that the user de󱤏󱢑ned adapt_threshold may not be satis󱤏󱢑ed everywhere in the mesh if the value
de󱤏󱢑ned for adapt_levels is exceeded.

10.3. NUMBER OF ADAPTIVE LEVELS

Command: adapt_levels Number of levels of adaptive refinement

Input file command: adapt_levels <arg>
Command line options: -AL <arg>
Argument Type: integer >= 0

Command Description:

The maximum number of levels of adaptive re󱤏󱢑nement to be performed. One level of re󱤏󱢑nement will
split each Cartesian grid cell identi󱤏󱢑ed for uniform re󱤏󱢑nement into eight child cells. Two levels of
re󱤏󱢑nement will split each cell again into eight, resulting in sixty-four child cells, three levels into 256, and
so on. The maximum number of subdivision per cell is give as:

number of cells = 8\^adapt_levels
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The minimum edge length for any cell will be given by:

min cell edge length = cell_size / adapt_levels\^2

The actual number of re󱤏󱢑nement levels used will be determined by whether all cells meet the
adapt_threshold, or the adapt_levels value is exceeded. The default adapt_levels is 2. Note that
setting the adapt_levelsmore than 4 or 5 can result in long compute times.

10.4. EXPORT REFINED CARTESIAN GRID

Command: adapt_export Export exodus mesh of refined grid

Input file command: adapt_export
Command line options: -AE

Command Description:

Export an exodus mesh containing the re󱤏󱢑ned Cartesian grid. Interface reconstruction, boundary layer
insertion and smoothing have not yet been applied to this mesh. It is the base mesh used as input to
Sculpt. One 󱤏󱢑le per processor will be exported in the form "vfrac_adapt.e.x.x". The exodus mesh
produced will also contain the computed volume fractions for each material present in the model
represented as element variables.

This option is primarily used for debugging the re󱤏󱢑nement option. However the mesh produced with
this option can be used as the base mesh when used with the input_mesh option. For example, instead
of Cartesian grid options, the input mesh may be speci󱤏󱢑ed as input_mesh = vfrac_adapt.e.1.0.
Sculpt will use the re󱤏󱢑ned mesh and the volume fraction element variables to build the 󱤏󱢑nal mesh.
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11. SMOOTHING

Sculpt options for specifying how the mesh will be smoothed following mesh generation.

Sculpt includes a tiered approach to smoothing to improve element quality. It starts by applying
smoothing to all nodes in the mesh and progressively restricts the smoothing operations to only those
nodes that fall below a user-de󱤏󱢑ned scaled Jacobian threshold. Default numbers of iterations and
thresholds for each smoothing phase have been tuned for general use, however it may be worthwhile to
adjust these parameters. The three smoothing phases include:

• Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach to improve
quality, but can result in degraded element quality if applied to excess. A 󱤏󱢑xed default of 2
iterations is applied to all hexes. Increasing the num_laplace parameter can improve some cases,
especially convex shapes.

• Optimization Smoothing: Applied only to elements who’s scaled Jacobian falls below the
opt_threshold parameter (default 0.6) and their surrounding elements. This approach uses a
more expensive optimization technique to improve regions of elements simultaneously. The
max_opt_iters parameter can control the maximum number of iterations applied (default is 5).
Iterations will terminate, however, if no further improvement is detected. Because this method
optimizes node locations simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

• Spot Optimization: Also known as parallel coloring, is applied only to elements who’s
element quality falls below the pcol_threshold parameter (default 0.2). This technique is the
most expensive of the techniques, but focusses only on nodes that are immediately adjacent to
poor quality hexes. Each node is smoothed independently of its neighbors, and may require a
high number of iterations using the max_pcol_iters to achieve desired results. Increasing the
pcol_threshold and max_pcol_iters may yield improved results.

Smoothing --smoothing -smo
--smooth -S <arg> Smoothing method
--csmooth -CS <arg> Curve smoothing method
--laplacian_iters -LI <arg> Number of Laplacian smoothing iterations
--max_opt_iters -OI <arg> Max. number of parallel Jacobi opt. iters.
--opt_threshold -OT <arg> Stopping criteria for Jacobi opt. smoothing
--curve_opt_thresh -COT <arg> Min metric at which curves won’t be honored
--max_pcol_iters -CI <arg> Max. number of parallel coloring smooth iters.
--pcol_threshold -CT <arg> Stopping criteria for parallel color smooth
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--max_gq_iters -GQI <arg> Max. number of guaranteed quality smooth iters.
--gq_threshold -GQT <arg> Guaranteed quality minimum SJ threshold

11.1. SMOOTH

Command: smooth Smoothing method

Input file command: smooth <arg>
Command line options: -S <arg>
Argument Type: integer (0, 1, 2, 3)
Input arguments: off (0)

default (1)
on (1)
fixed_bbox (2)
no_surface_projections (3)
to_geometry (4)

Command Description:

Automatic adjustment of node locations following meshing to improve element quality. Controls the
combined Laplacian and optimization smoothing procedures applied to volume and surface nodes (see
csmooth for curve smoothing options) Uses the laplacian_iters, max_opt_iters,
opt_threshold, max_pcol_iters, pcol_threshold, mqx_gq_iters and gq_threshold
arguments to control the sensitivity and aggressiveness of the smoothing operations. In most cases, the
default options for these parameters are suf󱤎icient, however increasing iterations or threshold values,
while potentially causing longer run times, may result in improved mesh quality.

Smoothing will adjust the location of nodes on surfaces, projecting them to an approximated surface
representation de󱤏󱢑ned by interface reconstruction from volume fractions. In addition to turning
smoothing on and off, the surface projection characteristics can be adjusted using the bbox_fixed
and no_surface_projections options.

• off (0): No volume and surface smoothing is performed.

• on/default (1): (Default) Combined Laplacian/Optimization (Hybrid) smoothing both
surface and volumes. Automatic boundary buf󱤎er layer improvement is performed at interior
surfaces intersecting the domain boundary.

• fixed_bbox (2): Uses standard hybrid smoothing procedure, however nodes at the the
domain boundaries will be projected to one of the six planes of the bounding box. This option
turns of󱤎 the automatic boundary buf󱤎er improvement.
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• no_surface_projections (3): Uses the fixed_bboxmethod, however interior surfaces
are not projected. This can result in smoother interior surface representations for microstructures
models. This is ef󱤎ective in smoothing noisy surface data, but can potentially reduce overall
volume. This method is default for microstructures 󱤏󱢑le formats.

• to_geometry (4): This option is currently under development. When used with the
capture option, smoothing will also move nodes to the closest geometry entity. It must
currently be used with capture to ensure that curves and surfaces are 󱤏󱢑rst identi󱤏󱢑ed and
associated with boundary mesh entities. This option will only work with STL or diatom input
that contains STL geometry.

Boundary Buffer Improvement: Sculpt’s smoothing procedures will use an automatic boundary
buf󱤎er improvement method. It will attempt to improve the quality of hexes where interior surfaces are
close to tangent with the bounding box. This can result in nodes that may not lie precisely on the planes
of the domain boundary. The fixed_bbox (2) and no_surface_projections (3) options will
turn of󱤎 the automatic boundary buf󱤎er improvement.

11.2. CURVE SMOOTHING

Command: csmooth Curve smoothing method

Input file command: csmooth <arg>
Command line options: -CS <arg>
Argument Type: integer (0, 1, 2, ...6)
Input arguments: off (0)

circle (1)
hermite (2)
average_tangent (3)
neighbor_surface_normal (4)
vfrac (5)
linear (6)

Command Description:

The csmooth option controls the smoothing method used on curves. In most cases the default should
be suf󱤎icient, however it may be useful to experiment with dif󱤎erent options. The default curve
smoothing option is vfrac (5). The following curve smoothing options are available:

• off (0): No curve smoothing will be performed.

• circle (1): Nodes projected to a 󱤏󱢑tted circle de󱤏󱢑ned current node and its two neighbors.

• hermite (2): Nodes projected based on Hermite interpolation. Note that this method can
only be used in serial (-j 1)
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• average_tangent (3): Nodes projected based on average tangent of neighbors. Note that
this method may not be parallel serial consistent.

• neighbor_surface_normal (4): Nodes projected based on neighboring surface normals
and the resulting intersecting planes.

• vfrac (5): (Default) Nodes projected to initial curve interface de󱤏󱢑ned from the original
volume fraction data.

• linear (6): Nodes projected to the linear segment de󱤏󱢑ned by the node and its two immediate
neighbors.

11.3. LAPLACIAN ITERATIONS

Command: laplacian_iters Number of Laplacian smoothing iterations

Input file command: laplacian_iters <arg>
Command line options: -LI <arg>
Argument Type: integer >= 0

Command Description:

Number of Laplacian smoothing iterations performed when Hybrid smoothing option is used. Default
value is 2.

11.4. MAXIMUM OPTIMIZATION ITERATIONS

Command: max_opt_iters Max. number of parallel Jacobi opt. iters.

Input file command: max_opt_iters <arg>
Command line options: -OI <arg>
Argument Type: integer >= 0

Command Description:

Indicates the maximum number of iterations of optimization-based smoothing to perform. May
complete sooner if no further improvement can be made. Default is 5
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11.5. OPTIMIZATION THRESHOLD

Command: opt_threshold Stopping criteria for Jacobi opt. smoothing

Input file command: opt_threshold <arg>
Command line options: -OT <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Indicates the value for scaled Jacobian where Optimization smoothing will be performed. Elements with
scaled Jacobian less than opt_threshold and their neighbors will be smoothed. Default value is 0.6

11.6. CURVE OPTIMIZATION THRESHOLD

Command: curve_opt_thresh Min metric at which curves won’t be honored

Input file command: curve_opt_thresh <arg>
Command line options: -COT <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Indicates the value for scaled Jacobian where if a node that falls on a curve has neighboring quads less
than this value, then the smoothing will no longer honor the curve de󱤏󱢑nition. Instead the optimization
smoother will attempt to place the node to optimize the neighboring mesh quality, without regard for
its placement on its owning curve.

Normally this value should be set close to zero to avoid too many nodes from 󱤐󱤔oating of󱤎 of their
owning curves, however, if mesh quality is constrained by curve geometry, setting this value higher can
help to avoid bad or poor quality elements. Default for this value is 0.1.

11.7. MAXIMUM PARALLEL COLORING
ITERATIONS

Command: max_pcol_iters Max. number of parallel coloring smooth iters.

Input file command: max_pcol_iters <arg>
Command line options: -CI <arg>
Argument Type: integer >= 0
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Command Description:

Maximum number of spot smoothing (also known as parallel coloring) iterations to perform. May
complete sooner if no further improvement can be made. Default is 100. See also pcol_threshold.

11.8. PARALLEL COLORING THRESHOLD

Command: pcol_threshold Stopping criteria for parallel color smooth

Input file command: pcol_threshold <arg>
Command line options: -CT <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Indicates scaled Jacobian threshold for spot smoothing (also known as parallel coloring). A parallel
coloring algorithm is used to uniquely identify and isolate nodes to be improved using optimization.
Default is 0.2.

11.9. MAXIMUM GUARANTEED QUALITY
ITERATIONS

Command: max_gq_iters Max. number of guaranteed quality smooth iters.

Input file command: max_gq_iters <arg>
Command line options: -GQI <arg>
Argument Type: integer >= 0

Command Description:

Maximum number of guaranteed quality smoothing iterations to perform. Guaranteed quality
smoothing performs a constrained Laplacian smoothing algorithm to adjust node locations. If the result
of a smoothing operation results in adjacent element quality falling below the speci󱤏󱢑ed gq_threshold
value, then move distance is cut until minimum threshold is achieved or the metric is improved. To
achieve parallel consistency, a parallel coloring methodology is employed. The max_gq_iters de󱤏󱢑nes
the maximum number of parallel color iterations employed. Default is 0 (of󱤎).

Note that guaranteed quality can be utilized in conjunction with other smoothing methods (Laplacian,
Optimization and Parallel Coloring), however to be ef󱤎ective it is normally used independent from
other smoothing. For example, to use guaranteed quality the following is suggested:
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laplacian_iters = 0
max_opt_iters = 0
max_pcol_iters = 0
max_gq_iters = 100

11.10. GUARANTEED QUALITY THRESHOLD

Command: gq_threshold Guaranteed quality minimum SJ threshold

Input file command: gq_threshold <arg>
Command line options: -GQT <arg>
Argument Type: floating point value (-1.0 -> 1.0)

Command Description:

Indicates scaled Jacobian threshold for guaranteed quality smoothing. Default is 0.2. see also
max_gq_iters
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12. MESH IMPROVEMENT

Sculpt options for modifying the mesh to improve mesh quality.

Automatic smoothing provides an ef󱤎ective method for improving element quality. However there may
be some cases that cannot be improved with smoothing alone. The options included in this section will
apply changes to the underlying hex mesh or to the volume fraction data to increase the opportunity for
smoothing to produce a good quality mesh.

Mesh Improvement --improve -imp
--pillow -p <arg> Set pillow criteria (1=surfaces)
--pillow_surfaces -ps Turn on pillowing for all surfaces
--pillow_curves -pc Turn on pillowing for bad quality at curves
--pillow_boundaries -pb Turn on pillowing at domain boundaries
--pillow_curve_layers -pcl <arg> Number of elements to buffer at curves
--pillow_curve_thresh -pct <arg> S.J. threshold to pillow hexes at curves
--pillow_smooth_off -pso Turn off smoothing following pillow operations
--capture -c <arg> Project to facet geometry <beta>
--capture_angle -ca <arg> Angle at which to split surfaces <beta>
--capture_side -sc <arg> Project to facet geometry with surface ID
--defeature -df <arg> Apply automatic defeaturing
--min_vol_cells -mvs <arg> Minimum number of cells in a volume
--defeature_bbox -dbb Defeature Filtering at Bounding Box
--defeature_iters -dfi <arg> Maximum Number of Defeaturing Iterations
--thicken_material -thm <arg> Expand a given material into surrounding cells
--micro_expand -me <arg> Expand Microstructure grid by N layers
--micro_shave -ms Remove isolated cells at micro. boundaries
--remove_bad -rb <arg> Remove hexes with Scaled Jacobian < threshold

12.1. PILLOW

Command: pillow Set pillow criteria (1=surfaces)

Input file command: pillow <arg>
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Command line options: -p <arg>
Argument Type: integer (0, 1, 2, 3)
Input arguments: off (0)

surfaces (1)
curves (2)
domain_boundaries (3)
surfaces_no_smoothing (100)
curves_2_layers (212)
curves_3_layers (213)
curves_4_layers (214)
curves_5_layers (215)
curves_2_layers_no_smoothing (202)
curves_3_layers_no_smoothing (203)
curves_4_layers_no_smoothing (204)
curves_5_layers_no_smoothing (205)

Command Description:

For models that have more than one material that share an interface, unless the geometry is precisely
aligned with the global axis, it is usually a good idea to turn on pillowing. Pillowing automatically
inserts an additional layer of hexes at interface boundaries to improve mesh quality. Without pillowing
you may notice inverted or poor quality elements at curve interfaces where 2 or more materials meet.

The pillow option will generate an additional layer of hexes at surfaces as a means to improve element
quality near curve interfaces. This is intended to eliminate the problem of 3 or more nodes from a single
hex face lying on the same curve. Use one or more of the following options to set up pillowing:

• pillow_surfaces: Pillow around all surfaces

• pillow_curves: Pillow bad quality at curves

• pillow_boundaries: Pillow at domain boundaries

• pillow_curve_layers: Number of element layers to buf󱤎er curves

• pillow_smooth_off: Turn OFF smoothing following pillow operations

See help on the above options for more information

12.2. PILLOW ALL SURFACES

Command: pillow_surfaces Turn on pillowing for all surfaces

Input file command: pillow_surfaces
Command line options: -ps
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Command Description: Pillow option to insert a layer of hexes surrounding each internal surface in the
mesh. Where two volumes share a common interface is de󱤏󱢑ned as a surface. All hexes that have at least
one of its faces on a surface are de󱤏󱢑ned as the "shrink set" of hexes. A separate shrink set is de󱤏󱢑ned for
each unique surface. Hexes in the set are shrunk away from their hex neighbors not in the shrink set. A
layer of hexes is then inserted surrounding all hexes in each set. This enforces the condition where no
more than one hex edge will lie on any single curve thus allowing more freedom for the smoother to
improve element quality.

Figure 12-1. Example of surface pillowing, before and after smoothing

Surface pillowing is of󱤎 by default. If both pillow_curves and pillow_surfaces options are used,
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curve pillowing will be performed before surface pillowing. See the pillow option for more
information on setting additional options for pillowing.

12.3. PILLOW BAD QUALITY AT CURVES

Command: pillow_curves Turn on pillowing for bad quality at curves

Input file command: pillow_curves
Command line options: -pc

Command Description: Pillow option to selectively pillow hexes at curves. Only hexes that have faces
with 3 or more nodes on a curve will be pillowed. Additional buf󱤎er layers of hexes beyond the poor
quads at the curves will be included in the pillow region. The number of buf󱤎er layers beyond the curve
can be controlled with the pillow_curve_layers, where the default will be 3 layers.
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Figure 12-2. Example of curve pillowing with four pil-
low_curve_layers, before and after smoothing

Curve pillowing is of󱤎 by default. If both pillow_curves and pillow_surfaces options are used,
curve pillowing will be performed before surface pillowing. See the pillow option for more
information on setting additional options for pillowing.

12.4. PILLOW AT DOMAIN BOUNDARIES

Command: pillow_boundaries Turn on pillowing at domain boundaries

Input file command: pillow_boundaries
Command line options: -pb

Command Description: Pillow option to insert pillow layers at domain boundaries of the initial
Cartesian grid de󱤏󱢑nition. One layer of hexes is inserted on each of the six faces of the Cartesian Domain.
This option is useful where the void option is used to generate a mesh in the full Cartesian grid and
where the adapt option has been used. Without this option, it is likely that hexes with two faces on the
same domain boundary will occur if the adaptation extends to the boundary. Turning on the
pillow_boundaries option should correct for these cases.
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Figure 12-3. Example of pillowing at boundaries on a microstruc-
ture RVE. (b) before smoothing (c) after smoothing

Boundary pillowing is of󱤎 by default. The pillow_boundaries option may be used in the same input
as pillow_surfaces or pillow_curves. The pillow_boundaries option must also be used with
the mesh_void option to ensure hexes will exist at the Cartesian domain boundary. See the pillow
option for more information on setting additional options for pillowing.

12.5. NUMBER OF ELEMENT LAYERS TO BUFFER
CURVES

Command: pillow_curve_layers Number of elements to buffer at curves

Input file command: pillow_curve_layers <arg>
Command line options: -pcl <arg>
Argument Type: integer > 0

Command Description: Used for setting the number of buf󱤎er hex layers when the pillow_curves
option is used. When pillow_curves is used a shrink set is formed from hexes that would otherwise
have two or more edges on the same curve. This value will control the extent to which neighboring
hexes will be included in the shrink set. The default pillow_curve_layers is 3. Setting this value
lower will localize the modi󱤏󱢑cations to the hex mesh, whereas, more layers will extend the region that is
af󱤎ected in correcting the poor quality at curves.

12.6. SCALED JACOBIAN THRESHOLD FOR
CURVE PILLOWING

Command: pillow_curve_thresh S.J. threshold to pillow hexes at curves
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Input file command: pillow_curve_thresh <arg>
Command line options: -pct <arg>
Argument Type: floating point value (-1.0->1.0)

Command Description: Used for setting the quality threshold for pillowing hexes at curves. When
determining hexes to include in the shrink set, the pillow_curves option will look for hexes with
more than two nodes of a hex on the same curve. If this condition is satis󱤏󱢑ed, it will test the mesh quality
of quads on the adjacent surfaces that share the common curve. If at least 3 nodes are on a common
curve and the Scaled Jacobian of any of the attached quads falls below the, pillow_curve_thresh
scaled Jacobian metric, then the associated hexes will be included in the shrink set.

Default for pillow_curve_thresh is 0.3. Increasing this value will tend to increase the total number
of hexes added to the mesh, but may result in better mesh quality after smoothing. Lowering this value
may reduce the number of additional hexes but could potentially result in more hexes with poor or bad
Scaled Jacobian metrics.

12.7. TURN OFF SMOOTHING FOLLOWING
PILLOW OPERATIONS

Command: pillow_smooth_off Turn off smoothing following pillow operations

Input file command: pillow_smooth_off
Command line options: -pso

Command Description: Controls the smoothing following pillow operations. To maximize element
quality at pillowed hexes, smoothing is always performed after inserting the hex layers. The smoothing
step may be omitted if pillow_smooth_off is set. This option can be useful for visualizing the pillow
layers that have been inserted, but in most cases will generate poor quality or inverted elements.

12.8. CAPTURE

Command: capture Project to facet geometry <beta>

Input file command: capture <arg>
Command line options: -c <arg>
Argument Type: integer (0, 1, 2)
Input arguments: off (0)

on (1)
external_surfaces (2)
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projections_only (3)
feature_angle_smooth (4)
topology_smooth (5)

Command Description:

This is an experimental option still in development. Nodes at the surfaces of a default sculpt mesh will
not necessarily exactly lie on the geometric surfaces prescribed by the input STL geometry. While this
characteristic can provide additional 󱤐󱤔exibility for defeaturing and element quality, there are cases where
a more exact surface representation may be desired. The capture option attempts to address this by
extracting sharp features and/or projecting nodes to the facet geometry.

Figure 12-4. Simple example illustrating the effect of the capture
= 5 option. Options smooth = to_geometry and pillow_curves =
true are also used for this example.

Several options are currently being studied as possible solutions. They include the following:

0 = (of󱤎) Capture option is of󱤎. No attempt is made at capturing sharp features.

1 = (on) STL geometry is used as basis for feature capture. A user de󱤏󱢑ned feature angle is used
(capture_angle) to 󱤏󱢑rst generate groups of facets from the STL geometry based on capture_angle.
Topological curves are de󱤏󱢑ned based on projections to closest surface facets and edges. With default
smoothing option, the surface nodes will be projected to the closest STL surfaces as a 󱤏󱢑nal step before
exporting the exodus mesh. Consider using smooth = to_geometry option.

2 = (exterior_surfaces) Only exterior surfaces are captured. Uses the same procedure as described in
capture = 1, except that interior surfaces (those with two adjacent volumes), will be ignored in the
capture and projections stage.

3 = (projections_only) For this option, additional topology based on feature angle is not extracted. Only
the 󱤏󱢑nal projection of surface nodes to the STL facets is done. Note that this option is useful for organic
shapes that do not have sharp features, or where sharp features should be ignored.
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4 = (feature_angle_smooth) This option uses the procedure outlined in capture = 1, except that the
smooth = to_geometry is used by default. Note that capture = 1 used with smooth =
to_geometry should be identical to this option.

5 = (topology_smooth) Curve topology is de󱤏󱢑ned similar to capture = 1, except that element face
topology is 󱤏󱢑rst determined based on closest assigned facet. Curve topology is then extracted based on
adjacent element face associativity. Surface node projections are only done for nodes that have
unambiguous neighbor associativity. This provides for a tolerant approach to resolving topology that
may result in defeaturing. (i.e. where the STL facet topology may be locally more complex than can be
resolved by the prescribed resolution). This option also uses the smooth = to_geometry option as
default for smoothing. Also note that capture = 5 it is only currently available for serial execution
(j=1)

12.9. CAPTURE ANGLE

Command: capture_angle Angle at which to split surfaces <beta>

Input file command: capture_angle <arg>
Command line options: -ca <arg>
Argument Type: floating point value (0 -> 360)

Command Description:

This is an experimental option still in development. Feature angle for capture option.

12.10. CAPTURE SIDE

Command: capture_side Project to facet geometry with surface ID

Input file command: capture_side <arg>
Command line options: -sc <arg>
Argument Type: integer > 0

Command Description:

Similar to the capture option, the capture_side option will project nodes to the initial triangle facets,
however projections will be limited only to surface nodes closest to the surface ID speci󱤏󱢑ed by the
argument. Note that the input STL 󱤏󱢑le can identify and group facets according to a surface ID.
However surface IDs are utilized only when using the gen_sidesets option with arguments 3 and 4.
When using Cubit, the STL 󱤏󱢑le written when using the sculpt parallel command with sideset options 3
and 4 will include surface identi󱤏󱢑cation for surfaces in the STL 󱤏󱢑le. A work󱤐󱤔ow for using the
capture_side option might include the following:
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1. Generate or import CADmodel into Cubit.

2. Identify and group selected surfaces into a single sideset with unique ID.

3. In the Sculpt GUI set the sideset generation option to 4.

4. Turn on the option: Do not Run Sculpt.

5. In your working directory edit the input 󱤏󱢑le (.i).

6. Add the option capture_side = <id> to the input 󱤏󱢑le.

7. Run sculpt in batch using the input 󱤏󱢑le to control execution.

The result should be a mesh where surface nodes closest to the surfaces identi󱤏󱢑ed by the unique sideset
ID will lie precisely on their closest surface.

12.11. DEFEATURE

Command: defeature Apply automatic defeaturing

Input file command: defeature <arg>
Command line options: -df <arg>
Argument Type: integer (0, 1, 2, 3)
Input arguments: off (0)

filter (1)
collapse (2)
filter_and_collapse (3)

Command Description:

Option to automatically detect and remove small features. Primarily used for defeaturing
microstructure data, however can be used with any input format. The following options are available:

• off (0): No defeaturing performed (default)

• filter (1): Filters the Cartesian grid data so that groupings of cells of a commonmaterial
with less than min_vol_cellswill be reassigned to the predominant neighboring material. If
the min_vol_cells argument is not speci󱤏󱢑ed, the minimum number of cells in a volume will
be set to 5. This has the ef󱤎ect of removing small volumes that would otherwise be generated.
This option will also remove protrusions, where a cell surrounded on 4 or 5 sides by another
material ID will be reassigned to the predominant neighboring material. This option is available
with multiple processors.

See also the defeature_iters and defeature_bbox options for additional control of the
defeature = filter option. The compare_volume option can also be used to validate that
changes made to material volumes are within acceptable limits.
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Figure 12-5. Example grid cells before and after defeaturing has been applied

Figure 12-6. Final mesh after using defeaturing.

• collapse (2): Curve and surface collapses are performed. This option is only available when
used with the trimesh option. After geometry has been extracted and built from the volume
fraction data curves containing exactly one mesh edge are collapsed into a single vertex. Surfaces
that are identi󱤏󱢑ed with exactly 2 curves, each of which have 2 mesh edges are collapsed into a
single curve. Only available as serial option (-j 1)
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Figure 12-7. Example collapsing of small curve on microstructure
model when using defeature=2 and trimesh option

• filter_and_collapse (3): Performs both option filter (1) and collapse (2) on a
trimesh. Only available as serial option (-j 1)

12.12. MINIMUM NUMBER OF CELLS IN A VOLUME

Command: min_vol_cells Minimum number of cells in a volume

Input file command: min_vol_cells <arg>
Command line options: -mvs <arg>
Argument Type: integer >= 0

Command Description:

When used with defeature options filter (1) or filter_and_collapse (3), speci󱤏󱢑es the
minimum number of cells below which a volume will be eliminated. The cells of small volumes will be
absorbed into the predominant material of the neighboring cells. If not speci󱤏󱢑ed and defeature options
filter (1) or filter_and_collapse (3) are used, the min_vol_cells value will be set to 5.

12.13. DEFEATURE AT BOUNDING BOX

Command: defeature_bbox Defeature Filtering at Bounding Box

Input file command: defeature_bbox
Command line options: -dbb

Command Description:

The defeature_bbox option is used in conjunction with defeature = filter (1). It is used to
modify the defeature 󱤏󱢑lter criteria at cells that are immediately adjacent to the Cartesian grid’s domain
boundary. It is most ef󱤎ective for microstructure data but can be used with any input format. The
defeature = filter (1) option will remove protrusions identi󱤏󱢑ed by cells that are surrounded on
4 or 5 sides by another material. For cells that are at the domain boundary, cells will have missing
adjacent cells on at least one face. If the defeature_bbox=true option is used, the missing adjacent
cells are considered a dif󱤎erent material and counted in the 4 or 5 surrounding cells with a dif󱤎erent
material. In contrast, the defeature_bbox=false option will not count the missing adjacent cells.
Using the defeature_bbox=true has the ef󱤎ect of more aggressively modifying cells at the domain
boundaries to avoid protrusions. The default for this option is defeature_bbox=false. It will be
ignored if defeature = filter (1) is not used.
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12.14. MAXIMUM NUMBER OF DEFEATURE
ITERATIONS

Command: defeature_iters Maximum Number of Defeaturing Iterations

Input file command: defeature_iters <arg>
Command line options: -dfi <arg>
Argument Type: integer >=0

Command Description:

Used with the defeature option. Controls the maximum number of iterations of defeature 󱤏󱢑ltering
that will be performed. Setting this value greater than the default of 10 can be useful for very noisy data
where a signi󱤏󱢑cant number of iterations will need to be performed to resolve the geometry.

When performing non-manifold resolution, the defeature state of some of the cells may be ef󱤎ected. As
a result, the defeaturing and non-manifold resolution procedures are performed in a loop until no
further changes can be made. The defeature_iters sets the maximum number of defeature and
non-manifold resolution procedures that will be performed. Note that if defeaturing reaches the
maximum iteration value without completely resolving all non-manifold conditions, that subsequent
sculpt procedures may not succeed. Set this value higher to allow the defeaturing and non-manifold
resolution to run to completion. The stair = 1 option can be used to interrogate the model to see
where non-manifold conditions may still exist.

12.15. THICKEN A MATERIAL

Command: thicken_material Expand a given material into surrounding cells

Input file command: thicken_material <arg>
Command line options: -thm <arg>
Argument Type: integer >= 0 floating point value (0.0->1.0)

Command Description:

Used with the defeature option. Add additional cells at the boundary of a given material. Takes two
input values, a material and a volume fraction between 0 and 1. This option is useful for noisy input
data that may not form contiguous volumes. Thickening a material may close small gaps making the
material continuous. To perform the thicken operation, cells in adjacent materials are removed and
reassigned to the indicated material. This option requires both a valid material ID and volume fraction
value, where the volume fraction represents the amount of material to be added to each neighboring
cell. For example:

thicken material = 1 0.2
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thicken_material = 2 0.5
each neighboring cell to material 1 will change approximately 20 percent of its volume to be material 1.
Other materials present in the cell will be decreased accordingly to maintain a sum of 1.0 for each cell.
Additional material is accumulated in neighboring cells from each adjacent cell it shares with material 1,
so that if for example a neighbor cell shares faces with three cells of material 1, it will add 0.6 (0.2 X 3) of
material 1 volume fraction to the neighbor. If more than one thicken_material option is used, the
thicken operation will be performed in the order they appear in the input. For the above example,
material 1 would 󱤏󱢑rst be thickened, followed by material 2. If materials 1 and 2 are adjacent, thickening
in this case, material 2 would take precedence, potentially removing cells frommaterial 1 at their
interface.

Figure 12-8. Bitmap input is used on a Cartesian base grid to
generate the mesh for complex head and brain anatomy. Left:
Some of the materials prior to applying the thicken_material
option. Right: After applying the thicken_material option.

12.16. MICROSTRUCTURE EXPANSION

Command: micro_expand Expand Microstructure grid by N layers

Input file command: micro_expand <arg>
Command line options: -me <arg>
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Argument Type: integer >= 0

Command Description:

This option expands the Cartesian grid by a speci󱤏󱢑ed number of layers. It can be used with any of the
following input options:

--input_micro
--input_cart_exo
--input_spn

In some cases the interior material interfaces may intersect the domain boundaries at small acute angles.
When this occurs it may be dif󱤎icult or impossible to achieve computable mesh quality at these
intersections. To address this problem, one or more layers of hexes may be added to the Cartesian grid.
The volume fractions from cells at the boundary are copied to generate additional layers. This has the
ef󱤎ect of increasing the angle of intersection for any material interfaces intersecting the domain
boundary. Usualy a value of 1 or 2 is suf󱤎icient to suf󱤎iciently improve quality.

Note that the resulting mesh in the expanded layers serves only to improve mesh quality and will only
duplicate existing data at the boundaries. It may not re󱤐󱤔ect the actual material structure within the
expansion layers.

Figure 12-9. (a) Initial mesh (b) One expansion layer added (c)
Two expansion layers added

12.17. MICROSTRUCTURE SHAVE

Command: micro_shave Remove isolated cells at micro. boundaries

Input file command: micro_shave
Command line options: -ms
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Command Description:

This option potentially modi󱤏󱢑es the outermost layer of Cartesian cells of a microstructures 󱤏󱢑le. It will
identify isolated cells where the assigned material is unique from all of its surrounding cells at the
boundary. When this occurs, the cell material is reassigned to the dominant nearby material.

This option is useful if it is noted that a cell structure just barely grazes the exterior planar boundary
surface. Poor quality elements can often result with this condition. The micro_shave option will, in
ef󱤎ect, remove material from the cell structure, but will result in better quality elements by removing the
intersection region with the boundary.

micro_shave can be used with any of the following input options:

--input_micro
--input_cart_exo
--input_spn

12.18. REMOVE BAD ELEMENTS BELOW
THRESHOLD

Command: remove_bad Remove hexes with Scaled Jacobian < threshold

Input file command: remove_bad <arg>
Command line options: -rb <arg>
Argument Type: floating point value -1.0 >= 1.0

Command Description:

Remove hexes below the speci󱤏󱢑ed scaled Jacobian metric.
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13. MESH TRANSFORMATION

Sculpt options for applying transformations to the mesh following mesh generation. For cases where
the initial geometry description may not be at the desired scale or bounds, the transformation options
provide the ability to apply transformations to the node locations following the mesh generation
procedure. This can be ef󱤎ective for microstructure models, where the size and location may be de󱤏󱢑ned
by the given intervals of the data.

Mesh Transformation --transform -tfm
--xtranslate -xtr <arg> Translate final mesh coordinates in X
--ytranslate -ytr <arg> Translate final mesh coordinates in Y
--ztranslate -ztr <arg> Translate final mesh coordinates in Z
--scale -scl <arg> Scale final mesh coordinates by constant

13.1. TRANSLATE MESH COORDINATES IN X

Command: xtranslate Translate final mesh coordinates in X

Input file command: xtranslate <arg>
Command line options: -xtr <arg>
Argument Type: floating point value

Command Description:

Translate all mesh coordinates written to Exodus 󱤏󱢑le by X delta distance.
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13.2. TRANSLATE MESH COORDINATES IN Y

Command: ytranslate Translate final mesh coordinates in Y

Input file command: ytranslate <arg>
Command line options: -ytr <arg>
Argument Type: floating point value

Command Description:

Translate all mesh coordinates written to Exodus 󱤏󱢑le by Y delta distance.

13.3. TRANSLATE MESH COORDINATES IN Z

Command: ztranslate Translate final mesh coordinates in Z

Input file command: ztranslate <arg>
Command line options: -ztr <arg>
Argument Type: floating point value

Command Description:

Translate all mesh coordinates written to Exodus 󱤏󱢑le by Z delta distance.

13.4. SCALE MESH COORDINATES BY CONSTANT

Command: scale Scale final mesh coordinates by constant

Input file command: scale <arg>
Command line options: -scl <arg>
Argument Type: floating point value

Command Description:

Scale all mesh coordinates written to Exodus 󱤏󱢑le by a constant scalar value.
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14. BOUNDARY LAYERS

Sculpt options for de󱤏󱢑ning boundary layers in the mesh. Boundary layers are thin hex layers that can be
de󱤏󱢑ned at surfaces, extending either inward or outward from a material. The user may specify the
number and thickness of the hex layers as well as the material ID of the layers. Layer thicknesses should
normally be "thin" with respect to the size of the cells. Layers will not intersect, so should be de󱤏󱢑ned on
surfaces where nearby layers will not overlap. Boundary layers are speci󱤏󱢑ed based upon a material ID,
where hex layers will be placed at surfaces where the material interfaces with other materials, or at free
surfaces.

Figure 14-1. Example of boundary layers.

Figure 14-2. Boundary layers defined at the surfaces of a material.

Boundary Layers --boundary_layer -bly
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--begin -beg <arg> Begin specification blayer or blayer_block
--end -zzz <arg> End specification blayer or blayer_block
--material -mat <arg> Boundary layer material specification
--num_elem_layers -nel <arg> Number of element layers in blayer block
--thickness -th <arg> Thickness of first element layer in block
--bias -bi <arg> Bias of element thicknesses in blayer block

14.1. BOUNDARY LAYER BEGIN

Command: begin Begin specification blayer or blayer_block

Input file command: begin <arg>
Command line options: -beg <arg>
Argument Type: blayer, blayer_block

Command Description:

De󱤏󱢑nes the beginning of a speci󱤏󱢑cation block. Must be closed with "end" argument. Currently supports
the following speci󱤏󱢑cations:

blayer
De󱤏󱢑nes a boundary layer speci󱤏󱢑cation. Layers of hex elements are placed at the interface of a given
material. Valid argumnts used within a blayer speci󱤏󱢑cation include: material, and begin blayer_block.

blayer_block
De󱤏󱢑nes a set of element layers within a given blayer de󱤏󱢑nition that share a commonmaterial ID. Valid
arguments used within a blayer_block speci󱤏󱢑cation include: material, num_elem_layers, thickness and
bias.

Example:
The following example shows a boundary layer speci󱤏󱢑cation in a sculpt input 󱤏󱢑le. In this example, two
boundary layer blocks are de󱤏󱢑ned at the interface of materials 1 and 2. Two material blocks with ID 3
and 4 are generated with 1 and 2 element layers respectively.

BEGIN BLAYER
MATERIAL = 1 2
BEGIN BLAYER_BLOCK

MATERIAL = 3
NUM_ELEM_LAYERS = 1
THICKNESS = 0.1

END BLAYER_BLOCK
BEGIN BLAYER_BLOCK
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MATERIAL = 4
NUM_ELEM_LAYERS = 2
THICKNESS = 0.2
BIAS = 1.3

END BLAYER_BLOCK
END BLAYER

Figure 14-3. Example schema for boundary layers corresponding
to input file below.

14.2. BOUNDARY LAYER END

Command: end End specification blayer or blayer_block

Input file command: end <arg>
Command line options: -zzz <arg>
Argument Type: blayer, blayer_block
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Command Description:

De󱤏󱢑nes the end of a speci󱤏󱢑cation block. Must be preceded with "begin" argument. Currently supports
arguments blayer and blayer_block.

14.3. BOUNDARY LAYER MATERIAL

Command: material Boundary layer material specification

Input file command: material <arg>
Command line options: -mat <arg>
Argument Type: integer > 0

Command Description:

De󱤏󱢑nes a material ID in a boundary layer speci󱤏󱢑cation. When used within a BLAYER speci󱤏󱢑cation, it
references one or two existing materials in the input where boundary layers will be generated. If a single
material is speci󱤏󱢑ed, hex layers will be generated at all interfaces of the designated material with any
adjacent material. If two material IDs are speci󱤏󱢑ed, layers will be generated only at interfaces where the
two materials are adjacent.

In most cases, the material ID(s) in the BLAYER speci󱤏󱢑cation refer to material IDs de󱤏󱢑ned in the
diatom 󱤏󱢑le for speci󱤏󱢑c geometry inserts such as STL 󱤏󱢑les or diatom primitives. It can also be de󱤏󱢑ned as
the void material ID (VOID_MAT) or a material in a volume fraction description such as input_vfrac,
input_micro, input_cart_exo or input_spn.

When used within a BLAYER_BLOCK speci󱤏󱢑cation, it refers to a new block that will be generated for
which all elements in the blayer_block will be assigned. Normally it refers to a unique material ID that
is not already referenced in the input. Where the material ID is already used, elements in the blayer
block will be added to the existing material.

A material ID must be de󱤏󱢑ned for both a BLAYER and BLAYER_BLOCK. This value does not have a
default.

14.4. NUMBER OF ELEMENT LAYERS IN
BOUNDARY LAYER

Command: num_elem_layers Number of element layers in blayer block

Input file command: num_elem_layers <arg>
Command line options: -nel <arg>
Argument Type: integer > 0
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Command Description:

Number of element layers to be de󱤏󱢑ned within a BLAYER_BLOCK speci󱤏󱢑cation. num_elem_layers
must be de󱤏󱢑ned for all BLAYER_BLOCKs.

14.5. BOUNDARY LAYER THICKNESS

Command: thickness Thickness of first element layer in block

Input file command: thickness <arg>
Command line options: -th <arg>
Argument Type: floating point value

Command Description:

Thickness of the 󱤏󱢑rst layer de󱤏󱢑ned in a BLAYER_BLOCK. Value is an absolute distance. No default is
provided and must be de󱤏󱢑ned for all BLAYER_BLOCKs

14.6. BOUNDARY LAYER BIAS

Command: bias Bias of element thicknesses in blayer block

Input file command: bias <arg>
Command line options: -bi <arg>
Argument Type: floating point value

Command Description:

Bias factor applied to additional layers of a BLAYER_BLOCK. Used in conjunction with the
THICKNESS parameter (thickness of 󱤏󱢑rst layer) it de󱤏󱢑nes a multiplier for the thickness for subsequent
element layers de󱤏󱢑ned within the same BLAYER_BLOCK. Default BIAS is 1.0 and is optional.
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O. EXAMPLES: USING CUBIT AS A
FRONT-END TO SCULPT

The following examples use Cubit’s graphical user interface as a front-end to the sculpt application.
Each of the examples to follow use this simple geometry that can be generated in Cubit. Execute these
commands in Cubit prior to performing the example Sculpt Parallel command line operations

sphere rad 1
sphere rad 1
vol 2 mov x 2
cylinder rad 1 height 2
vol 3 rota 90 about y
vol 3 mov x 1
unite vol all

Figure O-1. Geometry created in Cubit from the above com-
mands and used for the following examples.

A. BASIC SCULPT

This example illustrates use of Sculpt with all default options. So that we can view the result, we will
also use the overwrite, combine and import options.

sculpt parallel
draw block all
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The result of this operation is shown in Figure O-2. For this example, behind the scenes, Cubit built an
input 󱤏󱢑le for Sculpt, ran it on 4 processors, combined the resulting 4 meshes, and subsequently
imported the resulting mesh into Cubit. Note that Volume 1 remains "unmeshed" and we have created a
free mesh that is not associated with a volume. The result of any Sculpt command is always an
unassociated free mesh.

Figure O-2. Free mesh generated from sculpt command

B. SIZE AND BOUNDING BOX

This example illustrates the use of the size and box options

delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5

location position 1 1.5 0
draw block all

In this case we have used the size option to de󱤏󱢑ne the base cell size for the grid. We have also used the
box option to de󱤏󱢑ne a bounding box in which the mesh will be generated. Any geometry falling outside
of the bounding box is ignored by Sculpt. Figure O-3 shows the mesh generated with this command.

Figure O-3. Sculpt box option limits the extent of the generated mesh.
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C. MESHING THE VOID

In this example we illustrate the use of the void option:

delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5

location position 1 1.5 0 void
draw block all

The result is shown in 󱤏󱢑gure O-4 Notice that this example is precisely the same as the last with the
exception of the addition of the void option. Mesh is generated in the space surrounding the volume
out to the extent of the bounding box. In this case, an additional material block is de󱤏󱢑ned and
automatically assigned an ID of 2. The nodes and element faces at the interface between the two blocks
are shared between the two materials.

Figure O-4. Sculpt void operation generates mesh outside the volume.

D. AUTOMATIC SIDESET DEFINITION

In this example we illustrate the use of the sideset option.

Generating sidesets on the free mesh with Cubit: Sideset boundary conditions can be manually created
on the resulting free mesh from Sculpt using the standard Sideset <sideset_id> Face
<id_range> syntax. The Group Seed command is also useful in grouping faces based on a feature
angle to be used in a single sideset.

Generating sidesets in Sculpt: Sculpt also provides several options for de󱤏󱢑ning sidesets as part of the
Sculpt run. The following illustrates one option:

137



delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5

location position 1 1.5 0 void sideset 2
list sideset all
draw sideset all

Once again we use the same syntax but add the sideset 2 option to automatically generate a series of
sidesets. The list command should reveal that 10 sidesets were de󱤏󱢑ned for this example with IDs 1 to
10. Figure O-5 shows the result of the draw command showing all of the sidesets in dif󱤎erent colors.
Note that for the sideset 2 option, sidesets are created with the following criteria:

1. Interfaces between materials

2. Exterior surfaces

3. Surfaces at the domain boundary

Figure O-5. Automatic sidesets created using Sculpt

E. RUNNING SCULPT STAND-ALONE

This example illustrates how to set up the 󱤏󱢑les necessary to run Sculpt as a stand-alone process. This can
be done on the same desktop machine or moved to a larger cluster machine more suited for parallel
processing.

Begin by setting your working directory in Cubit to a location that is convenient for placing example
󱤏󱢑les:

cd "path/to/my/sculpt/examples"
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Next we issue the basic sculpt parallel command to mesh the volume

delete mesh
sculpt parallel processors 8 fileroot "bean" over no_execute

In this case, we used the no_execute option which does not invoke the Sculpt application. Instead it
will write a series of 󱤏󱢑les to the working directory. The fileroot option de󱤏󱢑nes the base 󱤏󱢑le name for
the 󱤏󱢑les that will be written; in this case "bean". We also use the processors option to set the number
of processors to be used to 8.

To see the 󱤏󱢑les that Cubit placed in the working directory, bring up a terminal window on your desktop
and change directories to the current working directory (ie. cd path/to/my/sculpt/examples). A
directory listing should reveal 3 󱤏󱢑les as shown in Figure O-6.

Figure O-6. Directory listing of files written from Cubit

The following describes the purpose of each of the resulting 󱤏󱢑les:

• bean.diatom: Diatoms is a 󱤏󱢑le format used by Sandia’s CTH and Alegra analysis programs that
includes a rich constructive solid geometry de󱤏󱢑nition. A series of directives for constructing and
orienting primitives to build a complete solid model can be used. Included in the Diatom
description is an STL import option. While any standard Diatom description may be used as
input to Sculpt, for Cubit’s purposes, only the STL option is used. This 󱤏󱢑le contains a listing of
all STL 󱤏󱢑les that will be used as input to Sculpt.

• bean.run: The .run 󱤏󱢑le contains the unix command line for running sculpt. Note that the 󱤏󱢑le
permissions have been set to execute to allow this 󱤏󱢑le to be used as a unix script. Figure O-7 shows
the .run 󱤏󱢑le for this example. Note that the command uses mpiexec and the psculpt
executables, along with their full path. These paths may need to be edited when running on a
dif󱤎erent machine. It also includes the default parameters for setting the sizes, bounding box and
smoothing parameters that have been computed by Cubit.

• bean_Volume_1.stl: The STL 󱤏󱢑le is a copy of the geometric model. In our case, it is a
representation of the cylinder and sphere object we have been working with. The STL format is a
set of triangles that describe the surfaces of the object. One STL 󱤏󱢑le will be generated for each
Volume. If the Block option is used, then one 󱤏󱢑le for each Block would be created.

To run sculpt on the same machine, from the terminal window in your current working directory you
would issue the following command:
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Figure O-7. Unix command line for running Sculpt generated by Cubit

./bean.run

If Sculpt is to be run on a dif󱤎erent machine, copy the 󱤏󱢑les in the working directory to the other machine
and issue the same command. Remember to change the path to the mpiexec and psculpt executables
to match those on the newmachine. For running on cluster machines that have scheduling of resources,
check with your system administrator for how to submit a job for running.

After running Sculpt, Figure 8 shows the resulting 󱤏󱢑les that would be written to the current working
directory.

Figure O-8. Eight Exodus files were generated and placed in working directory

Note that 8 exodus 󱤏󱢑les have been generated, 1 from each processor. These 󱤏󱢑les can be used by
themselves or used as-is for use in a simulation, or they can be combined into a single 󱤏󱢑le. The exodus
󱤏󱢑les produced by Sculpt include all appropriate parallel communication information as de󱤏󱢑ned by the
Nemesis format. Nemesis is an extension of Sandia’s Exodus II format that also includes appropriate
parallel communication information.

To combine the resulting exodus 󱤏󱢑les into a single 󱤏󱢑le, we can use the epu tool. Epu should be included
in your Cubit distribution, but may require you to set up appropriate paths for it to be recognized. To
run epu on this model, use the following command from a unix terminal window:

epu -p 8 bean.diatom_result

The result should be a single 󱤏󱢑le with the name bean.diatom_result.e. The mesh in this 󱤏󱢑le can
then be imported into Cubit. Switch back to your Cubit application and from the command line type
the following command:
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import mesh "bean.diatom_result.e" no_geom

The result should be the same mesh we generated previously that is shown in Figure O-2.

F. MESHING MULTIPLE MATERIALS WITH SCULPT

This example illustrates using Sculpt to mesh models with multiple materials. To begin with, we will
modify our current model by adding some additional volumes. Use the following commands:

delete mesh
cylinder rad 0.5 height 3
cylinder rad 0.5 height 3
vol 5 mov x 2

The resulting geometry should look like the image in Figure O-9

Figure O-9. Geometry used to demonstrate multiple materials with Sculpt

Use this geometry to generate a mesh using Sculpt.

sculpt parallel size 0.075
draw block all

The resulting mesh should look like the image in O-10.

Notice that one mesh block per volume was created. We should also note that no boolean operations
were performed prior to building the mesh with Sculpt. In fact, volumes 4 and 5 were signi󱤏󱢑cantly
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Figure O-10. Mesh generated on multiple materials

overlapping volume 1. This would be an invalid condition for normal Cubit meshing operations. Figure
O-11 shows a cut-away image of the mesh using the Cubit Clipping Plane tool.

We should also note that imprint/merge operations typically needed for traditional meshing
operations in Cubit, were also not required. While it is usually best to avoid overlaps to avoid
ambiguities in the topology, Sculpt is able to generate a mesh giving precedence to the most recently
de󱤏󱢑ned materials. Merging is performed strictly by geometric proximity. Volumes closer than about one
half the user input size will normally be automatically merged.

Next, we will examine the mesh quality of the free mesh. The following command will display a
graphical representation of the Scaled Jacobian metric.

quality hex all scaled jacobian draw mesh

The result is shown in Figure O-12. Note the elements (colored red) at the interface between materials
are unacceptable for simulation. This is caused by the Sculpt algorithm projecting nodes to a common
curve interface shared by the materials.

In most cases, the poor element quality at material interfaces can be improved by using the pillow
option. Adding this option will direct Sculpt to add an additional layer of elements surrounding each
surface. To see the result of pillowing, issue the following commands:

delete mesh
sculpt parallel size 0.075 over combine import pillow 1
quality hex all scaled jacobian draw mesh
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Figure O-11. Cut-away of mesh generated on multiple materials

Figure O-12. Mesh quality of multi-material mesh

The resulting mesh is showed in Figure O-13. Note the improved mesh quality at the shared curve
interface. A closer look at the mesh, shown in Figure O-14. reveals the additional layer of hexes
surrounding each surface that allows for improved mesh quality when compared with Figure O-11.
When generating meshes with multiple materials that must share common interfaces, the pillow
option is usually recommended.
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Figure O-13. Mesh quality of multi-material mesh using pillow option

Figure O-14. Cutaway of mesh reveals the additional layer of
hexes surrounding each surface when the pillow option is used
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P. EXAMPLES: USING THE
COMMAND-LINE SCULPT
APPLICATION

The following illustrate simple use cases of the Sculpt application. To use these examples, copy the stl
and diatom 󱤏󱢑les from appendix Q to your working directory and name them brick1.stl,
brick2.stl and bricks.diatom respectively.

A. MESHING A SINGLE STL VOLUME

sculpt -j 4 -stl brick1.stl -cs 0.5

Runs sculpt with 4 processors with geometry input from brick1.stl. Uses a base Cartesian cell size of
0.5. The bounding box and all other parameters will be defaulted. The result should be the 4 exodus
󱤏󱢑les:

brick1.stl_results.e.4.0
brick1.stl_results.e.4.1
brick1.stl_results.e.4.2
brick1.stl_results.e.4.3

These 󱤏󱢑les can be combined into a single 󱤏󱢑le using the SEACAS tool epu

epu -p 4 brick1.stl_results

The result of this operation should be a single 󱤏󱢑le:

brick1.stl_results.e

To view the resulting mesh in Cubit, use the import free mesh command. For example:

import mesh "brick1.stl_results.e" no_geom
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Figure P-1. Resulting mesh from example of single STL volume

B. MESHING MULTIPLE STL VOLUMES

mpiexec -np 4 psculpt -x 46 -y 26 -z 26 -t -6.5 -u -6.5 -v -6.5
-q 16.5 -r 6.5 -s 6.50 -d bricks.diatom

In this case we use mpiexec to start 4 processes of psculpt. We explicitly de󱤏󱢑ne the number of
Cartesian intervals and the dimensions of the grid. Rather than using the -stl option, we use the -d
option which allows us to specify the diatom 󱤏󱢑le, bricks.diatom. This 󱤏󱢑le allows us to specify
multiple stl 󱤏󱢑les, where each one represents a dif󱤎erent material. In this case we use both brick1.stl
and brick2.stl, which are called out in bricks.diatom.

Figure P-2. Resulting mesh from example of two STL volumes
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Q. EXAMPLE FILES

A. BRICK1.STL

solid Body 1
facet normal 0.000000e+00 0.000000e+00 1.000000e+00

outer loop
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex -5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 0.000000e+00 1.000000e+00

outer loop
vertex 5.000000e+00 -5.000000e+00 5.000000e+00
vertex -5.000000e+00 5.000000e+00 5.000000e+00
vertex -5.000000e+00 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 0.000000e+00 -1.000000e+00

outer loop
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex -5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal -0.000000e+00 0.000000e+00 -1.000000e+00

outer loop
vertex 5.000000e+00 5.000000e+00 -5.000000e+00
vertex -5.000000e+00 -5.000000e+00 -5.000000e+00
vertex -5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 -1.000000e+00 0.000000e+00

outer loop
vertex -5.000000e+00 -5.000000e+00 5.000000e+00
vertex -5.000000e+00 -5.000000e+00 -5.000000e+00
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vertex 5.000000e+00 -5.000000e+00 5.000000e+00
endloop

endfacet
facet normal 0.000000e+00 -1.000000e+00 -0.000000e+00

outer loop
vertex 5.000000e+00 -5.000000e+00 5.000000e+00
vertex -5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

outer loop
vertex -5.000000e+00 5.000000e+00 5.000000e+00
vertex -5.000000e+00 5.000000e+00 -5.000000e+00
vertex -5.000000e+00 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

outer loop
vertex -5.000000e+00 -5.000000e+00 5.000000e+00
vertex -5.000000e+00 5.000000e+00 -5.000000e+00
vertex -5.000000e+00 -5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 1.000000e+00 0.000000e+00

outer loop
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00
vertex -5.000000e+00 5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 1.000000e+00 0.000000e+00

outer loop
vertex -5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00
vertex -5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

outer loop
vertex 5.000000e+00 -5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 5.000000e+00

endloop
endfacet
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facet normal 1.000000e+00 -0.000000e+00 0.000000e+00
outer loop

vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet

endsolid Body 1

B. BRICK2.STL

solid Body 1
facet normal 0.000000e+00 0.000000e+00 1.000000e+00

outer loop
vertex 1.500000e+01 5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 1.500000e+01 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 0.000000e+00 1.000000e+00

outer loop
vertex 1.500000e+01 -5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 0.000000e+00 -1.000000e+00

outer loop
vertex 1.500000e+01 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 1.500000e+01 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal -0.000000e+00 0.000000e+00 -1.000000e+00

outer loop
vertex 1.500000e+01 5.000000e+00 -5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 -1.000000e+00 0.000000e+00

outer loop
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vertex 5.000000e+00 -5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 1.500000e+01 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 -1.000000e+00 -0.000000e+00

outer loop
vertex 1.500000e+01 -5.000000e+00 5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00
vertex 1.500000e+01 -5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

outer loop
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00
vertex 5.000000e+00 -5.000000e+00 5.000000e+00

endloop
endfacet
facet normal -1.000000e+00 -0.000000e+00 -0.000000e+00

outer loop
vertex 5.000000e+00 -5.000000e+00 5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00
vertex 5.000000e+00 -5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 1.000000e+00 0.000000e+00

outer loop
vertex 1.500000e+01 5.000000e+00 5.000000e+00
vertex 1.500000e+01 5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 5.000000e+00

endloop
endfacet
facet normal 0.000000e+00 1.000000e+00 0.000000e+00

outer loop
vertex 5.000000e+00 5.000000e+00 5.000000e+00
vertex 1.500000e+01 5.000000e+00 -5.000000e+00
vertex 5.000000e+00 5.000000e+00 -5.000000e+00

endloop
endfacet
facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

outer loop
vertex 1.500000e+01 -5.000000e+00 5.000000e+00
vertex 1.500000e+01 -5.000000e+00 -5.000000e+00
vertex 1.500000e+01 5.000000e+00 5.000000e+00
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endloop
endfacet
facet normal 1.000000e+00 -0.000000e+00 0.000000e+00

outer loop
vertex 1.500000e+01 5.000000e+00 5.000000e+00
vertex 1.500000e+01 -5.000000e+00 -5.000000e+00
vertex 1.500000e+01 5.000000e+00 -5.000000e+00

endloop
endfacet

endsolid Body 1

C. BRICKS.DIATOM

diatoms
package ’Brick1’

material 1
iterations 3
insert stl

FILE = ’brick1.stl’
endinsert

endp
package ’Brick2’

material 2
iterations 3
insert stl

FILE = ’brick2.stl’
endinsert

endp
enddia
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